Year 4 Monitoring Report for South Muddy Creek Tributaries (Queen Properties)

South Muddy Creek Tributaries McDowell County, NC SCO # D04006-01

Prepared for: NCDENR – EEP 2728 Capital Blvd, Suite 1H 103 Raleigh NC 27604

Submitted: December 2009

Table of Contents

I.	Exec	utive Summary1
II.	Proje A. B. C. D.	Location and Setting Project Structure, Mitigation Type, Approach and Objectives Project History and Background Monitoring Plan View
ш.	Proje A. B.	Vegetation Assessment 1. Soil Data 2. Vegetative Problem Areas 3. Vegetative Problem Areas Plan View 4. Stem Counts 5. Vegetation Plot Photos Stream Assessment 1. Hydrologic Criteria 2. Stream Problem Areas 3. Stream Problem Areas 4. Stream Problem Areas 5. Fixed Station Photos 6. Stability Assessment 7. Quantitative Measures
IV.		odology43
Figure Figure	e 1. e 2.	Location Map Monitoring Plan View
List of Table		les Project Structure Table
Table	II. III. IV. V. VI. VIII. IX. XI. XII.	Project Mitigation Objectives Table Project Activity and Reporting History Project Contact Table Project Background Table Preliminary Soil Data Vegetative Problem Areas Stem Counts for Each Species Arranged by Plot Verification of Bankfull Events Stream Problem Areas Categorical Stream Feature Visual Stability Assessment Baseline Geomorphologic and Hydraulic Summary Morphology and Hydraulic Monitoring Summary

List of Appendices

Appendix A Vegetation Raw Data

- 1. Vegetation Problem Area Photos
- 2. Vegetation Problem Area Plan View
- 3. Vegetation Monitoring Plot Photos
- 4. Vegetation Data Tables

Appendix B Geomorphologic Raw Data

- 1. Stream Problem Areas Plan View
- 2. Stream Problem Area Photos
- 3. Fixed Station Photos
- 4. Table B1. Qualitative Visual Stability Assessment
- 5. Cross Section Plots
- 6. Longitudinal Plots
- 7. Pebble Count Plots
- 8. Bankfull Event Photos

I. EXECUTIVE SUMMARY

The South Muddy Creek Tributaries restoration project is located near Dysartsville in McDowell County, North Carolina. The stream channels included in this project are designated as Tributaries A, A2, B and C. Prior to restoration, Tributaries A and A2 were drainage channels that had experienced modification in the form of ditching and vegetative management. Tributaries B and C were natural channels that were in a degraded condition attributed to head-cutting and streambank erosion exacerbated by cattle intrusion. The project consists of a combination of Priority 1 and Priority 2 Restoration and Enhancement Level 1. The project goal for the restoration plan, completed in 2005, was to re-establish geomorphologic features consistent with natural stream channel characteristics. Elements of the restoration design included grade control and bank stabilization using natural materials and native plantings, reconnection of the channels to functional floodplains, and the incorporation of instream habitat features including riffle/pool complexes to re-establish, sort and transport substrate materials. The following report documents the Year 4 Annual Monitoring for this project.

Vegetative monitoring was completed in September 2009 using the methodology of the Carolina Vegetation Survey. Stem counts completed in 30 vegetation plots showed an average density of 545 stems per acre for the site, which exceeds the success criteria of 320 stems per acre after three years and the allowable 10% mortality for 288 stems/acre after 4 years. Three individual plots have stem densities below the minimum; planted stems have been added to these plots, increasing the stem count over the original monitoring period and bringing these plots to a stem count that meets the final Year 5 criteria. In addition, a substantial number of recruit stems have been found across the site. The recruit stems increase the total stem density across the site to 772 stems per acre.

A few vegetative problem areas of low concern were noted in the project area, included scattered populations of problematic species. The problematic species have been and will continue to be proactively managed by herbicide treatment.

Monitoring identified some problem areas along the tributaries of South Muddy Creek, including areas of bank scour and aggradation. Areas first noted as problems in a previous year of monitoring have extensive vegetative development, which has increased streambank stability. Newly noted problem areas are expected to follow the same trend of vegetative development. Several areas of aggradation were noted in Year 4. Sand is the dominant streambed substrate in the project reaches, and as such, sediment deposition is attributed to high sediment supply readily available in the contribution watershed. It is noted that at all locations of aggradation, the channel and streambanks are stable. One area of noted aggradation involved the upstream portion of Tributary A2. This section of the stream developed wetland vegetation within the stream channel, which appears to have decreased flows, thereby allowing sediment to drop into the channel. Because this type of problem tends to exacerbate itself, the channel was returned to initial design standards by removing fine sediment and wetland vegetation. A second problem involves a nonfunctional log sill along Tributary B, which will be fixed prior to the next monitoring report to return the grade control function of the structure.

The visual stream stability assessment revealed that the majority of stream features are functioning as designed and built on the project reaches. The structures identified as problematic were log sills on Tributary B, most of which had become embedded in sand size sediment.

However, the channel is stable at each location where aggradation has covered a structure. A few meanders were found in a limited state of erosion, none of which were considered worthy of maintenance. In addition, the meanders that had been in a state of degradation in previous years have improved due to the increased vegetative cover along the stream corridors. The pools and riffles that were noted to be performing in a state unlike that of the as-built conditions were the result of aggradation along the corresponding reaches.

Dimensional measurements of the monumented cross-sections remain stable, generally within the range of values measured in previous years. Comparisons of the yearly long-term stream monitoring data show successive increases in channel-floodplain connectivity and increasingly stable channel dimensions. The comparison of the As-Built, Year 3 and Year 4 long-term stream monitoring profile data show successive increases in the development of pool/riffle features as compared to as-built conditions. Riffle lengths, pool lengths, and pool to pool spacings have steadily decreased from the as-built conditions, with the exception of Tributary A2, which had an increase in pool to pool spacing attributed to aggradation. Median particle sizes of the stream channels ranged from silt to medium grained sand, following a trend of decreased median particle sizes from the as-built conditions. Based on the crest gage network installed on the project reaches, the required two bankfull events have been recorded since construction was completed.

The following tables summarize the geomorphological changes along the restoration reaches for each stream.

Tributary A (Upper)

Parameter	Pre-	As-built	Year 1	Year 2	Year 3	Year 4
	Restoration					
Length	1,283 ft	1,609 ft	1,609 ft	1,609 ft	1,609 ft	1,609 ft
Bankfull Width	6.6 ft	12.5 ft	16.3 ft	16.2 ft	15.3 ft	13.5 ft
Bankfull Mean	0.9 ft	0.9 ft	0.9 ft	0.9 ft	0.8 ft	0.6 ft
Depth						
Bankfull Max	1.8 ft	1.5 ft	1.9 ft	1.9 ft	1.8 ft	1.6 ft
Depth						
Width/Depth	7.3	16.1	17.6	18.2	19.5	22.9
Ratio						
Entrenchment	1.4	4.1	3.2	3.2	3.7	4.1
Ratio						
Bank Height	3.6	1.1	1.1	1.0	1.0	1.0
Ratio						
Sinuosity	1.1	1.5	1.5	1.5	1.5	1.5

Tributary A (Middle)

Parameter	Pre-	As-built	Year 1	Year 2	Year 3	Year 4
	Restoration					
Length	809 ft	1,094 ft	1,094 ft	1,094 ft	1,094 ft	1,094 ft
Bankfull Width	6.6 ft	15.0 ft	14.6 ft	14.7 ft	14.6 ft	13.8 ft
Bankfull Mean	0.9 ft	0.8 ft	1.1 ft	1.1 ft	1.1 ft	1.0 ft
Depth						
Bankfull Max	1.8 ft	1.5 ft	2.4 ft	2.1 ft	2.2 ft	2.3 ft
Depth						
Width/Depth	7.3	17.9	12.8	14.0	13.7	14.0
Ratio						
Entrenchment	1.4	4.0	4.6	4.2	4.2	4.8
Ratio						
Bank Height	3.6	1.1	1.1	1.1	1.1	1.0
Ratio						
Sinuosity	1.0	1.3	1.3	1.3	1.3	1.3

Tributary A (Lower)

Parameter	Pre-	As-built	Year 1	Year 2	Year 3	Year 4
	Restoration					
Length	5,179 ft	7,349 ft	7,349 ft	7,349 ft	7,349 ft	7,349 ft
Bankfull Width	6.6 ft	22.1 ft	24.4 ft	25.3 ft	25.1 ft	26.0 ft
Bankfull Mean	0.7 ft	0.8 ft	0.9 ft	0.9 ft	0.9 ft	0.9 ft
Depth						
Bankfull Max	1.4 ft	1.8 ft	1.9 ft	1.9 ft	1.9 ft	1.9 ft
Depth						
Width/Depth	8.9	23.5	29.0	28.6	27.7	31.4
Ratio						
Entrenchment	1.6	3.2	2.6	2.4	2.8	2.5
Ratio						
Bank Height	5.9	1.0	1.1	1.1	1.1	1.0
Ratio						
Sinuosity	1.0	1.4	1.4	1.4	1.4	1.4

Tributary A2

Parameter	Pre-	As-built	Year 1	Year 2	Year 3	Year 4
·	Restoration					
Length	322 ft	480 ft	480 ft	480 ft	480 ft	480 ft
Bankfull Width	7.1 ft	17.9 ft	21.4 ft	21.7 ft	22.3 ft	21.3 ft
Bankfull Mean	0.6 ft	1.0 ft	0.8 ft	0.8 ft	0.7 ft	0.6 ft
Depth						
Bankfull Max	1.1 ft	1.8 ft	1.6 ft	1.5 ft	1.3 ft	1.2 ft
Depth						
Width/Depth	11.8	17.7	26.1	27.2	30.2	36.6
Ratio						
Entrenchment	1.6	2.6	2.2	2.1	2.2	2.2
Ratio						
Bank Height	5.9	1.0	1.2	1.0	1.0	1.0
Ratio						
Sinuosity	1.1	1.4	1.4	1.4	1.4	1.4

Tributary B

Parameter	Pre-	As-built	Year 1	Year 2	Year 3	Year 4
	Restoration					
Length	1,279 ft	2,041 ft	2,041 ft	2,041 ft	2,041 ft	2,041 ft
Bankfull Width	7.8 ft	24.9 ft	24.8 ft	27.0 ft	28.4 ft	27.5 ft
Bankfull Mean	0.6 ft	0.6 ft	0.8 ft	0.8 ft	0.8 ft	0.8 ft
Depth						
Bankfull Max	1.2 ft	1.6 ft	1.9 ft	1.9 ft	1.8 ft	2.0 ft
Depth						
Width/Depth	12.6	41.3	32.0	31.1	38.6	33.8
Ratio						
Entrenchment	1.5	2.7	2.5	2.3	2.3	2.5
Ratio						
Bank Height	4.4	1.0	1.0	1.0	1.0	1.0
Ratio						
Sinuosity	1.1	1.6	1.6	1.6	1.6	1.6

II. PROJECT BACKGROUND

A. Location and Setting

The project is located in McDowell County, North Carolina, approximately two miles south of Interstate 40, between Marion and Morganton near the community of Dysartsville. The tributaries lie east of Muddy Creek Road, north of Pinnacle Church Road and west of Dysartsville Road, as shown on Figure 1. The stream channels included in the project are designated as Tributaries A, A2, B and C. Tributaries A, B and C confluence directly with South Muddy Creek. Tributary A2 confluences with Tributary A.

Directions to the project site are as follow:

From Marion, follow Interstate 40 east to Dysartsville Road (Exit 94). Turn right onto Dysartsville Road to travel south for approximately 2 miles to Pinnacle Church Road. Follow Pinnacle Church Road to Muddy Creek Road, and turn right. The project site is on the east side of the road. This is private property; access to the stream corridor is limited to the dedicated ingress/egress included as part of the recorded Conservation Easement. Coordination with the property owner is encouraged prior to accessing the property.

B. Project Structure, Mitigation Type, Approach and Objectives

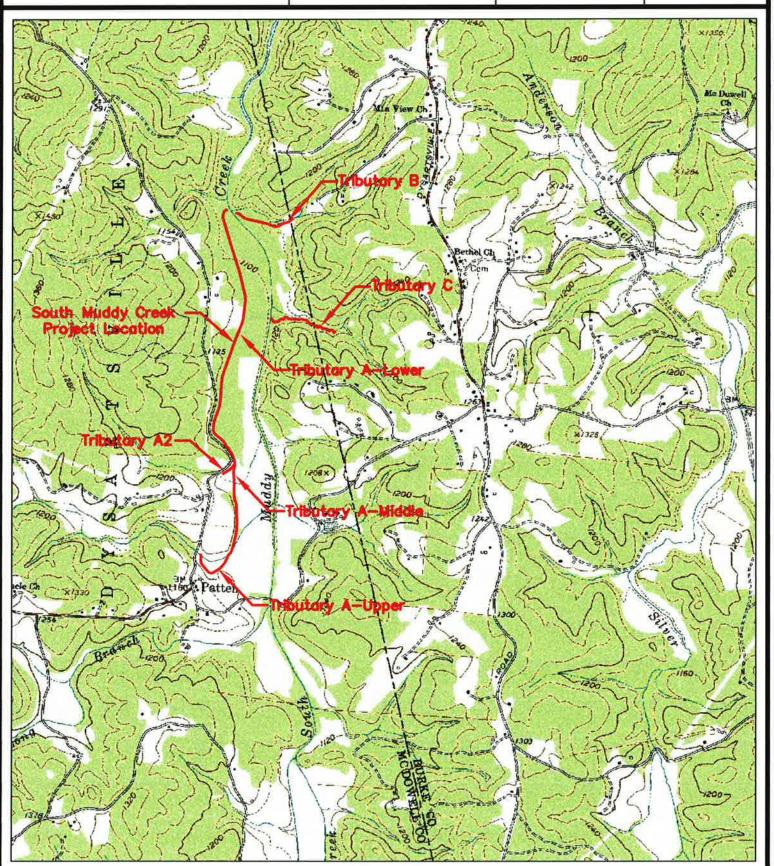
Pre-restoration land use surrounding the project tributaries consisted of agricultural croplands along Tributaries A and A2 and cattle pastureland along Tributaries B and C. The upper reaches of Tributaries A2, B and C were characterized by a mix of pastureland and limited wooded corridor. Tributaries A and A2 were drainage channels that had experienced modification in the form of ditching and vegetative management prior to restoration. Tributaries B and C are natural channels that, prior to restoration, were in a degraded condition attributed to head-cutting and streambank failure and erosion exacerbated by cattle intrusion and associated hoof shear. All of the tributary channels, prior to restoration, had narrow or denuded riparian corridors.

Tributaries A, A2 and B were surrounded by either cropland or pasture with no significant buffer prior to restoration. Tributaries B and C lacked cattle intrusion fencing that adversely impacted streambank stability. Tributary C was less degraded, prior to restoration, in that it had a significant wooded riparian corridor on the south (left) bank with well sorted and well graded bed materials. However, Tributary C was impacted by a significantly degraded riparian corridor on the north (right) bank, with numerous locations of streambank erosion and failure associated with cattle intrusion.

Restoration of the project streams re-established geomorphologic features consistent with natural stream channel characteristics. Results achieved are listed below.

- Bankfull channels constructed with the appropriate geometries to convey bankfull flows and transport suspended and bedload materials available to the streams.
- Stable channel patterns consistent with natural streams in the region.

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775,4500 Fax: 614.775,4800


M C M X X V

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

MONITORING FIGURE 1

Date: September, 2007 | Job No. 2004-2359 | Scale: 1" = 2000'

- Grade control and bank stabilization features that enhance environmental attributes of the stream channels through the use of natural materials and native plantings.
- In-stream habitat features, including riffle/pool complexes to re-establish, sort and transport substrate materials available to the streams.
- Reconnection of project stream channels to functional floodplains.
- Extensive indigenous instream and riparian revetment.

Restoration of Tributaries A, A2 and B was accomplished through the modification of the existing pattern, profile and dimension of the tributary channels to a stable condition. The restored channels are on an alignment that is offset from the pre-existing stream channels. Post-construction, the existing tributary channels were abandoned and filled. Restoration along these reaches was either Priority 2, where the elevation of the floodplain was lowered through excavation to re-connect it to the restored stream channel, or a combination of Priority 2 and Priority 1, where the floodplain was lowered and the stream thalweg was raised above the existing channel profile.

The lower reach of Tributary A has a low gradient, which flattens to 0.0012 ft/ft. Due to a relatively flat profile gradient, a series of successive pool and riffle complexes was not proposed. Instead, the restored stream channel has constructed point bars on the inside of meander bends at pool locations and is transporting its bedload through the run/pool complexes as the bed form of the channel naturally evolves. The steeper gradient associated with the restored stream channels along Tributaries A2 and B allowed the construction of a sinuous channel with constructed riffle/pool sequences.

Enhancement Level I was implemented along one of the reaches on Tributary A by modifying the profile and dimension of the channel. Along this segment, improvements were constructed along the alignment of the existing stream channel. Enhancement Level I on Tributary C provides bank stabilization, through cattle exclusion, with one hard-engineered, fenced and controlled cattle access point for watering, combined with continuous preservation of the riparian buffer zone via live stock exclusion fencing. Stabilization was accomplished by re-grading steep, undercut channel banks, and the use of jute matting and live plantings.

An important component of the restoration of Tributaries B and C is cattle exclusion. As mentioned previously, these channels are adjacent to pastureland, where cattle frequented the streams for shade and drinking water. Prior to restoration, the cattle accessed the streams at random locations and, in doing so, denuded and destabilized the pre-existing channel banks. The restoration of Tributary B includes fencing that permanently excludes cattle from the stream corridor. The fencing along Tributary C limits cattle access to a single point along the stream reinforced with stone underlain by non-woven geotextile to prevent degradation that would otherwise occur. All fencing has been placed at the outer edge of the perpetual conservation easement held by the State of North Carolina. Information regarding the project structure and objectives is included in Tables I and II that follows:

Table I. Project Structure Table South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01						
Project Reach/Segment ID Linear Footage						
A (upper)	1,609 1.f.					
A (middle)	1,094 1.f.					
A	1,052 l.f.					
A (lower)	7,349 l.f.					
A2	480 1.f.					
В	2,041 l.f.					
С	1,601 l.f.					
TOTAL	15,226 l.f.					

Table II. Project Mitigation Objectives Table South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01							
Project Segment/ Reach ID	Mitigation Type	Approach	Linear Footage or Acreage	Comment			
A (upper)	Restoration	Priority 1&2	1,609 l.f.	Restore dimension, pattern, and profile			
A	Enhancement	Level 1	1,052 l.f.	Restore dimension and profile			
A (middle)	Restoration	Priority 1&2	1,094 l.f.	Restore dimension, pattern, and profile			
A (lower)	Restoration	Priority 2	7,349 l.f.	Restore dimension, pattern, and profile			
A2	Restoration	Priority 2	480 l.f.	Restore dimension, pattern, and profile			
В	Restoration	Priority 2	2,041 l.f.	Restore dimension, pattern, and profile			
С	Enhancement	Level 1	1,601 l.f.	Restore dimension and pattern			
	TOTAL			15,226 l.f.			

C. Project History and Background

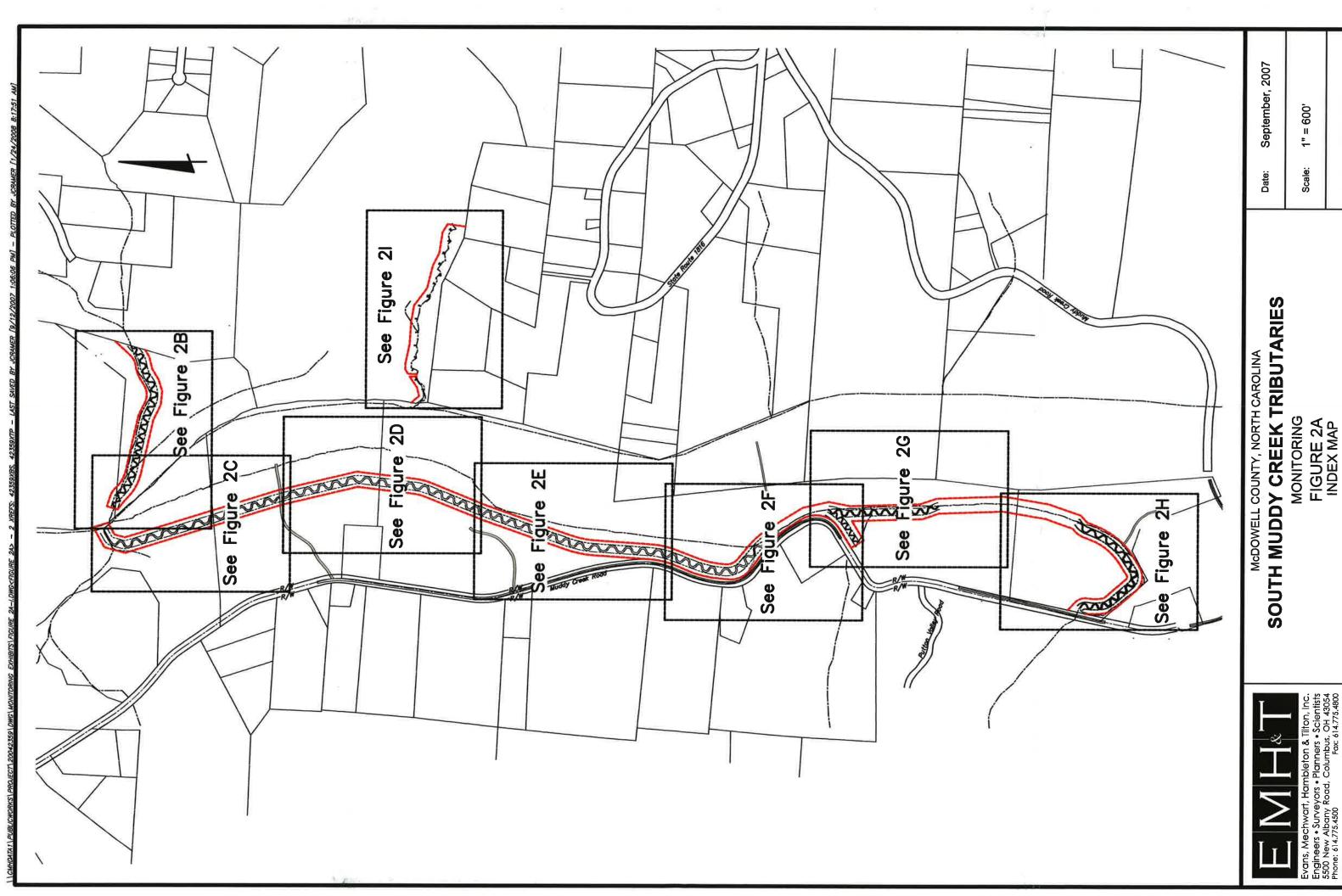
Project activity and reporting history are provided in Table III. The project contact information is provided in Table IV. The project background history is provided in Table V.

Table III. Project Activity and Reporting History South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01

Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery
Restoration plan	Aug 2005	Fall 2004	Mar 2005
Final Design - 90% ¹	N/A	N/A	N/A
Construction	Feb 2006	N/A	Apr 2006
Temporary S&E applied to entire project area ²	Jul 2005	N/A	Apr 2006
Permanent plantings	Apr 2006	N/A	Apr 2006
Mitigation plan/As-built	Jun 2006	Nov 2006	Jan 2007
Year 1 monitoring	2006	Sep 2006 (vegetation) Apr 2007 (geomorphology)	Jun 2007
Year 2 monitoring	2007	Sep 2007 (vegetation) Oct 2007 (geomorphology)	Jan 2008
Year 3 monitoring	2008	Sep 2008 (vegetation) Oct 2008 (geomorphology)	Dec 2008
Year 4 monitoring	2009	Sep 2009 (vegetation) Sep 2009 (geomorphology)	Dec 2009
Year 5 monitoring	2010		

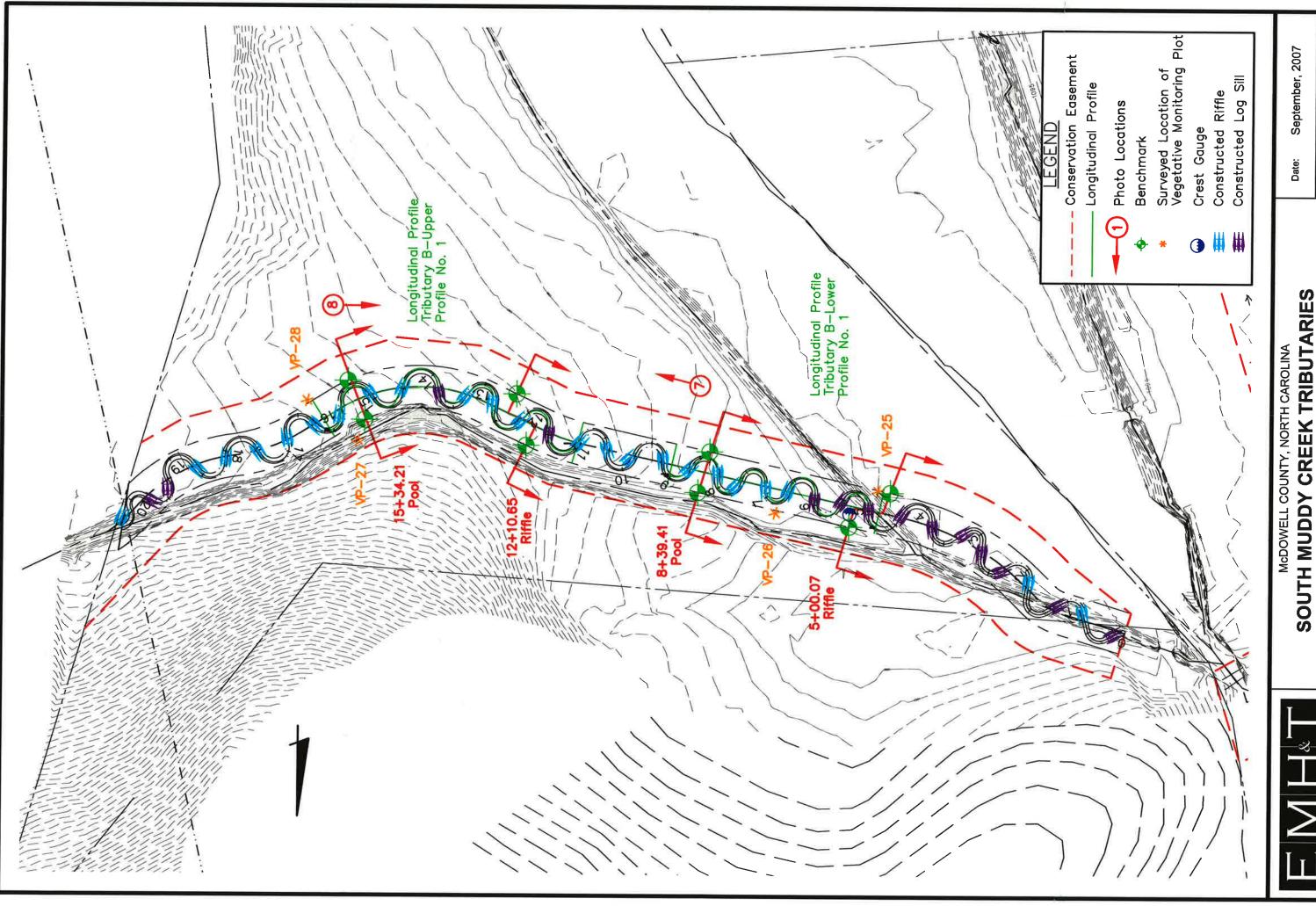
Full-delivery project; 90% submittal not provided.

N/A: Data collection is not an applicable task to these project activities.


Table IV. Project Contact Table South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01						
Evans, Mechwart, Hambleton & Tilton, Inc.						
Designer 5500 New Albany Road, Columbus, OH 43054						
Construction South Mountain Forestry						
Contractor	6624 Roper Hollow, Morganton, NC 28655					
	Evans, Mechwart, Hambleton & Tilton, Inc.					
Monitoring Performers	5500 New Albany Road, Columbus, OH 43054					
Stream Monitoring POC	Warren E. Knotts, P.G., EMH&T					
Vegetation Monitoring						
POC	Holly Blunck, EMH&T					

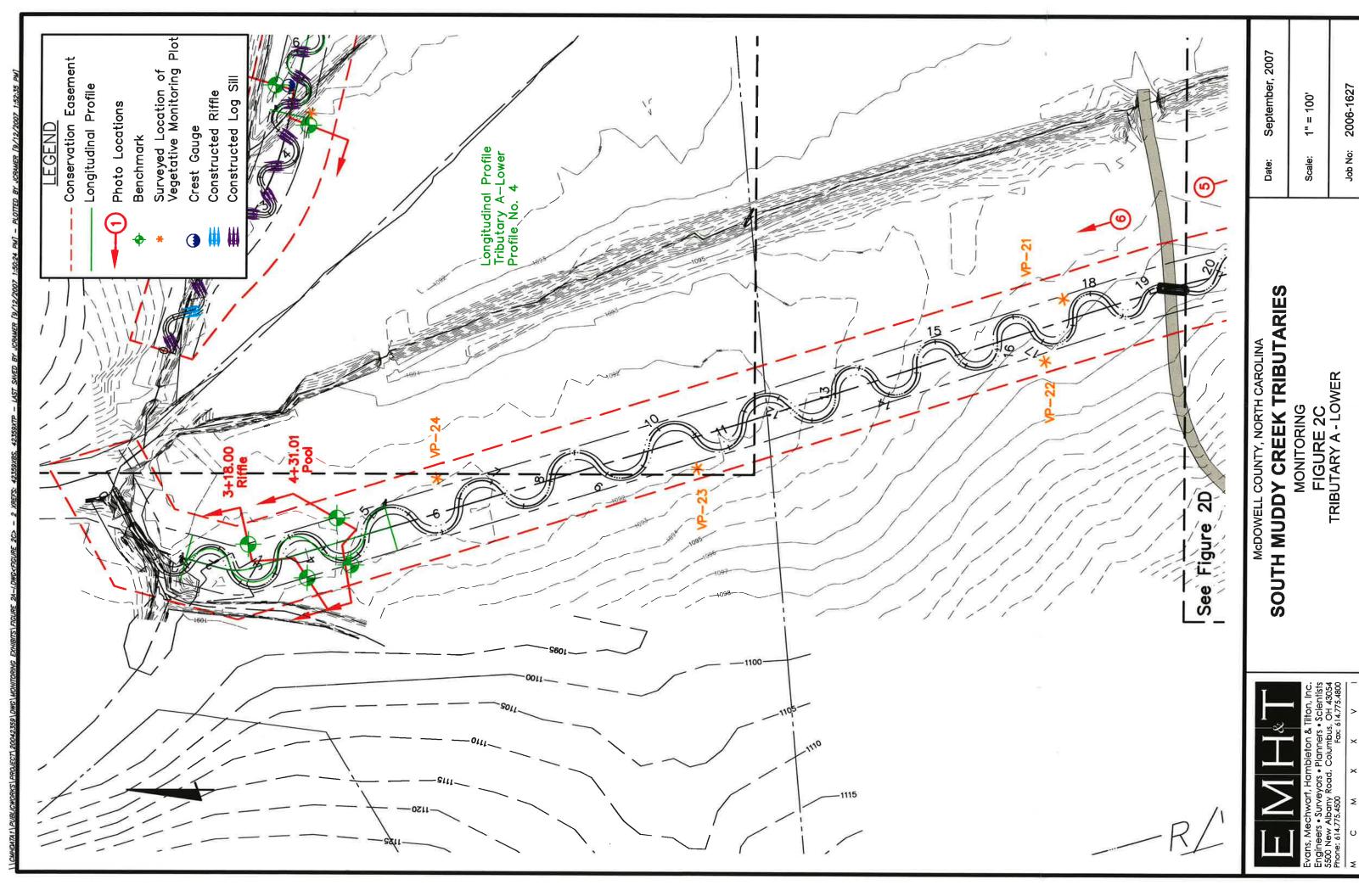
²Erosion and sediment control applied incrementally throughout the course of the project.

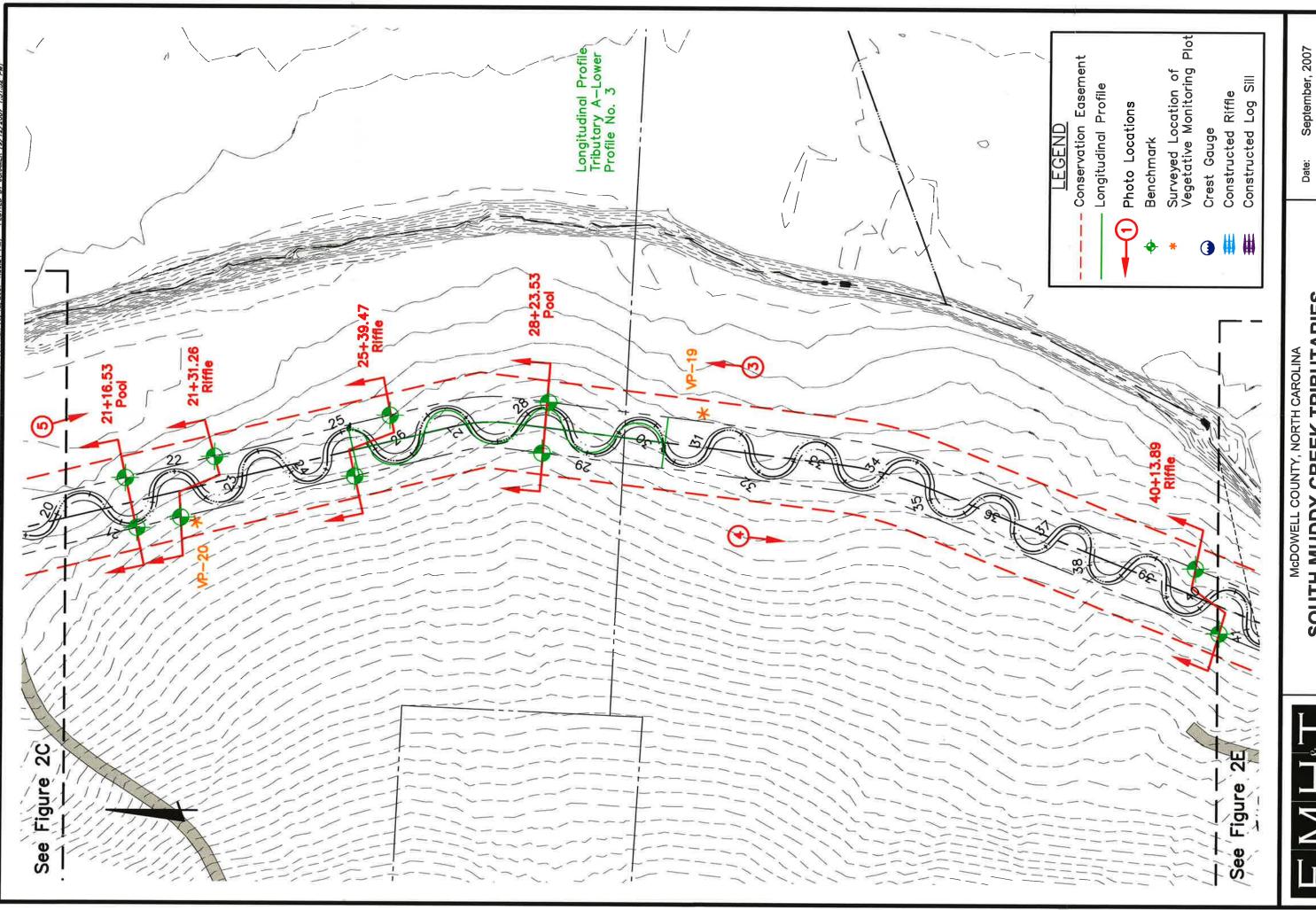
Table V. Project Background Table South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01					
Project County	McDowell				
Drainage Area- A (upper & middle)	1.38 sq mi				
Drainage Area-A (lower)	2.03 sq mi				
Drainage Area-A2	0.27 sq mi				
Drainage Area-B	0.44 sq mi				
Drainage Area-C	0.37 sq mi				
Drainage Impervious Cover Estimate	2%-6%				
Stream Order	Tributary A, B, C -2nd Tributaries A2 – 1st				
Physiographic Region	Blue Ridge Mountains				
Ecoregion	Eastern Blue Ridge Foothills				
Rosgen Classification of As-built	C4/C5				
Dominant Soil Types	Iotla sandy loam, Dillard loam				
Reference Site ID	South Muddy Birchfield, South Muddy "Tributary 4"				
USGS HUC for Project and Reference	3050101				
NCDWQ Sub-basin for Project and Reference	03-08-30				
NCDWQ Classification for Project and Reference	C				
Any portion of any project segment 303d listed?	No				
Any portion of any project segment upstream of a 303d listed segment?	No				
Reason for 303d listing or stressor	N/A				
% of project easement fenced	24%				


D. Monitoring Plan View

The monitoring plan view is included as Figure 2.

2006-1627

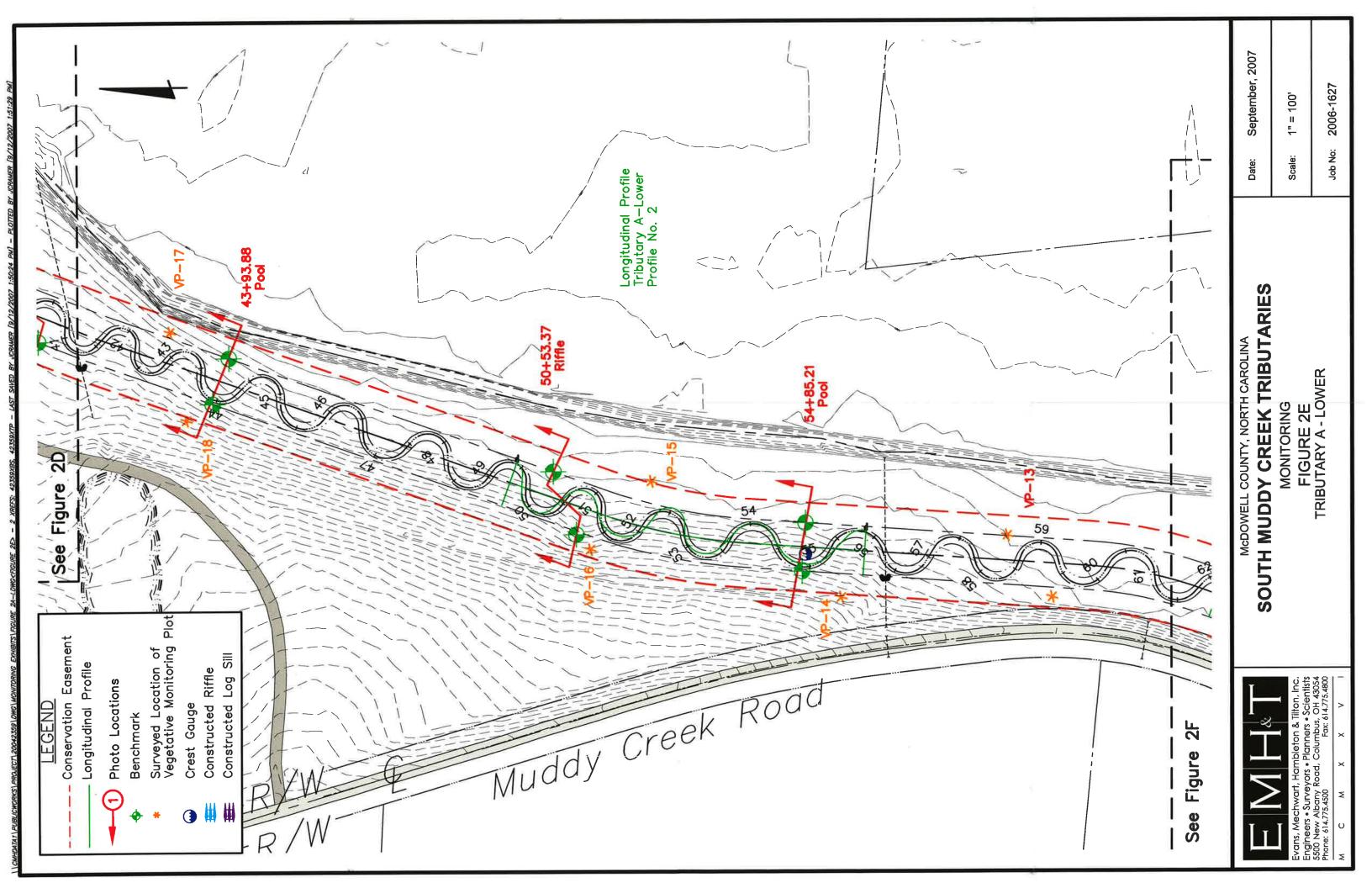

Job No:

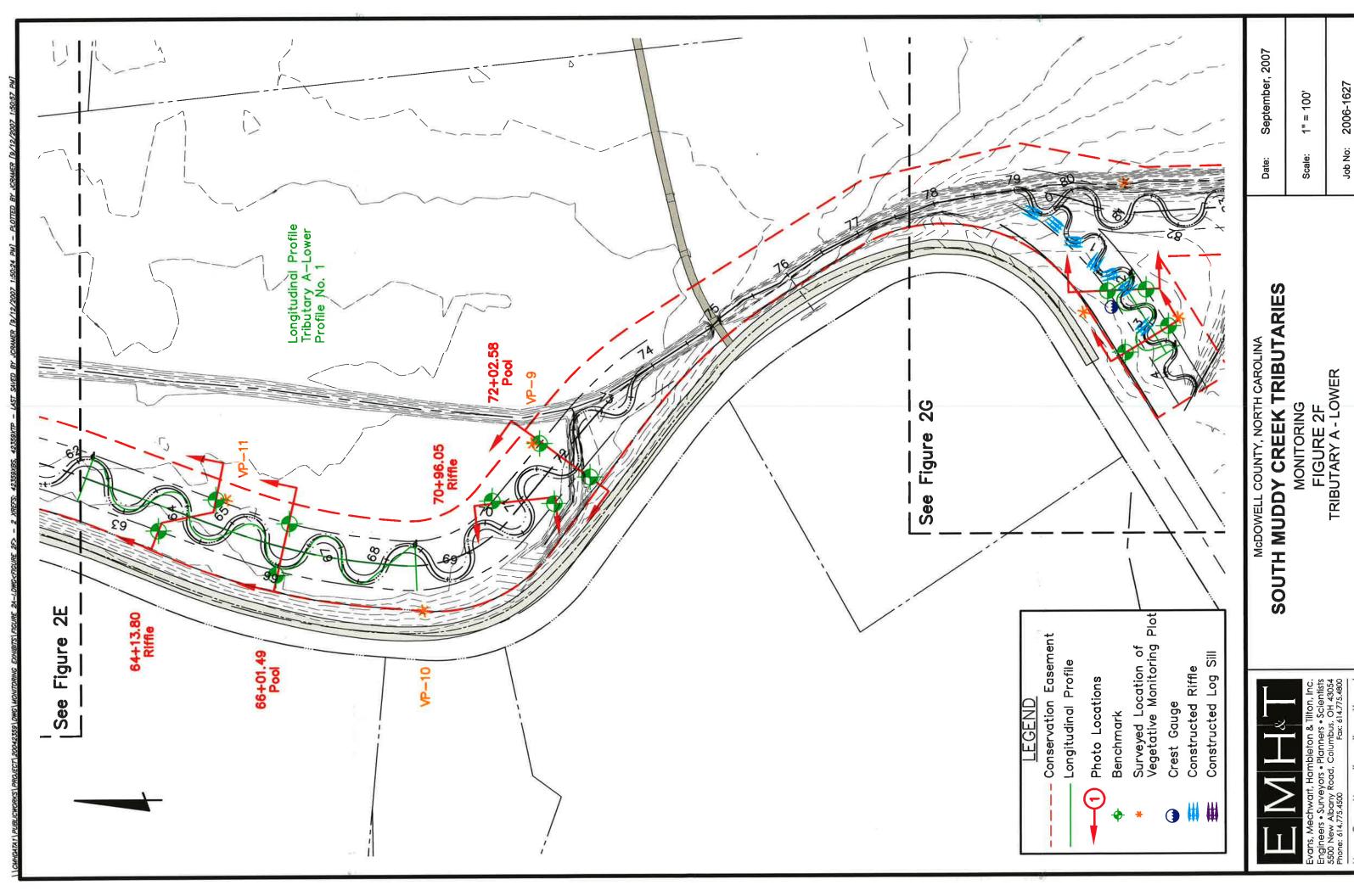


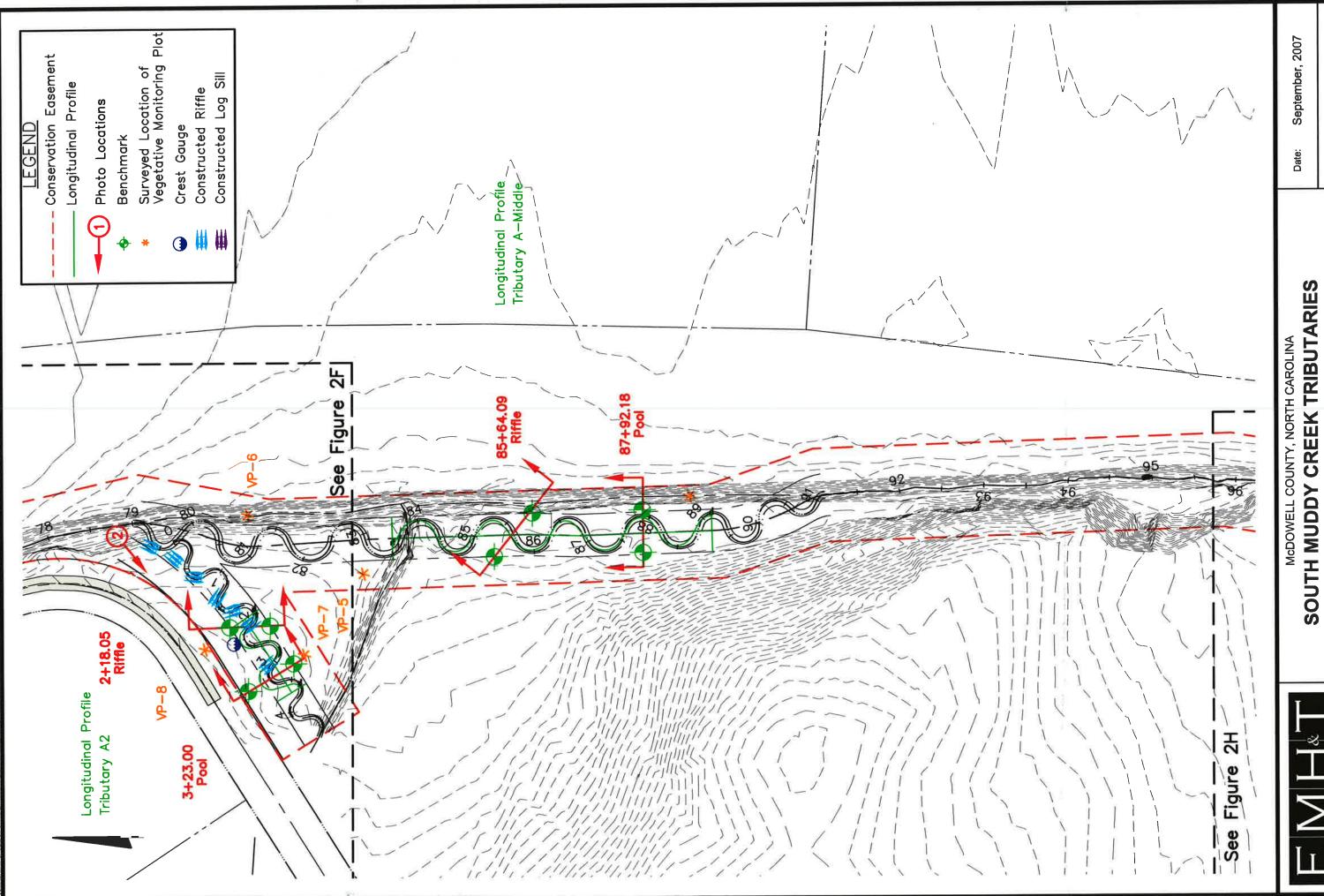
MONITORING FIGURE 2B TRIBUTARY B

1" = 600' Scale:

2006-1627 Job No:

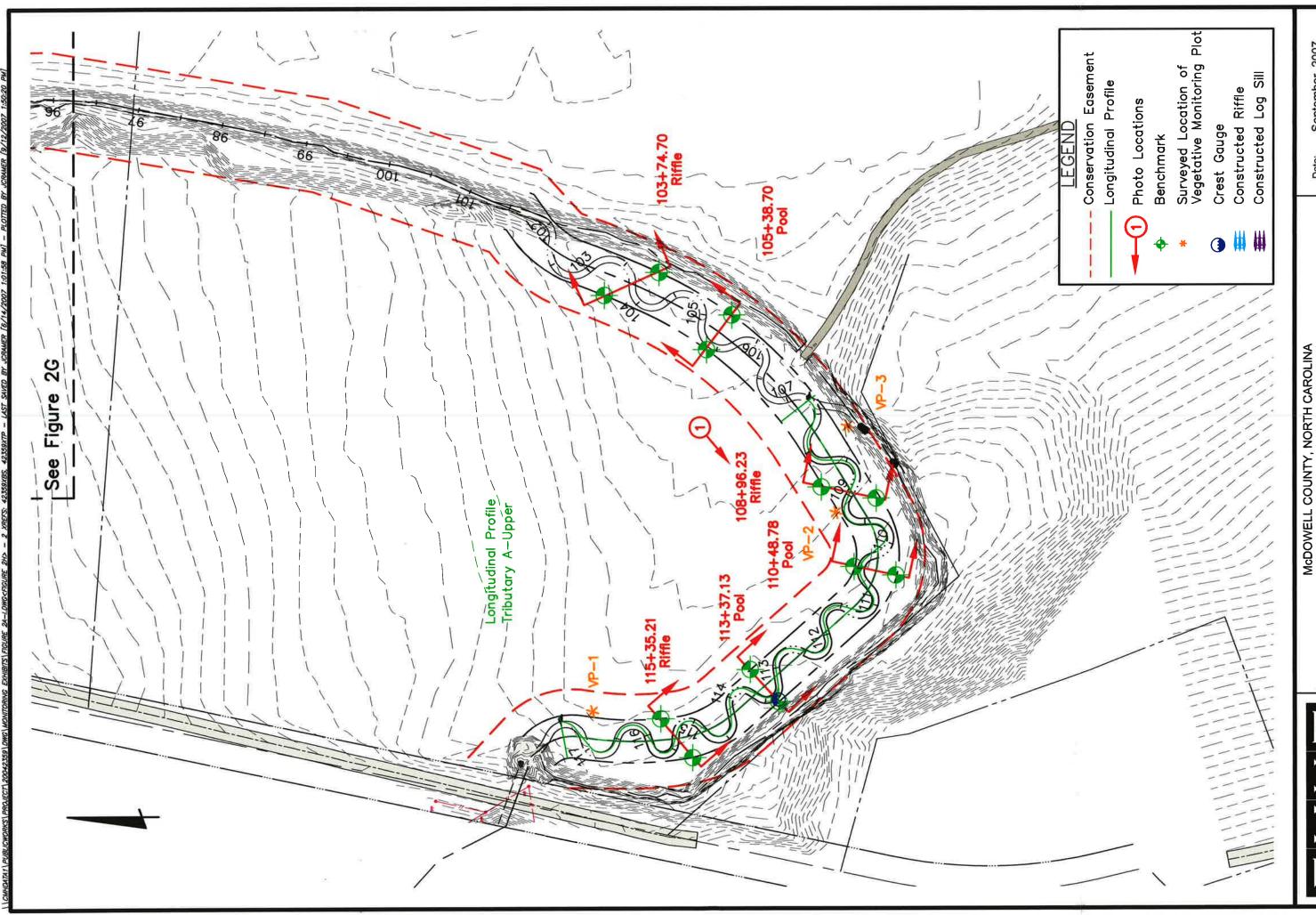



SOUTH MUDDY CREEK TRIBUTARIES


MONITORING
FIGURE 2D
TRIBUTARY A - LOWER

Date:

1" = 100'

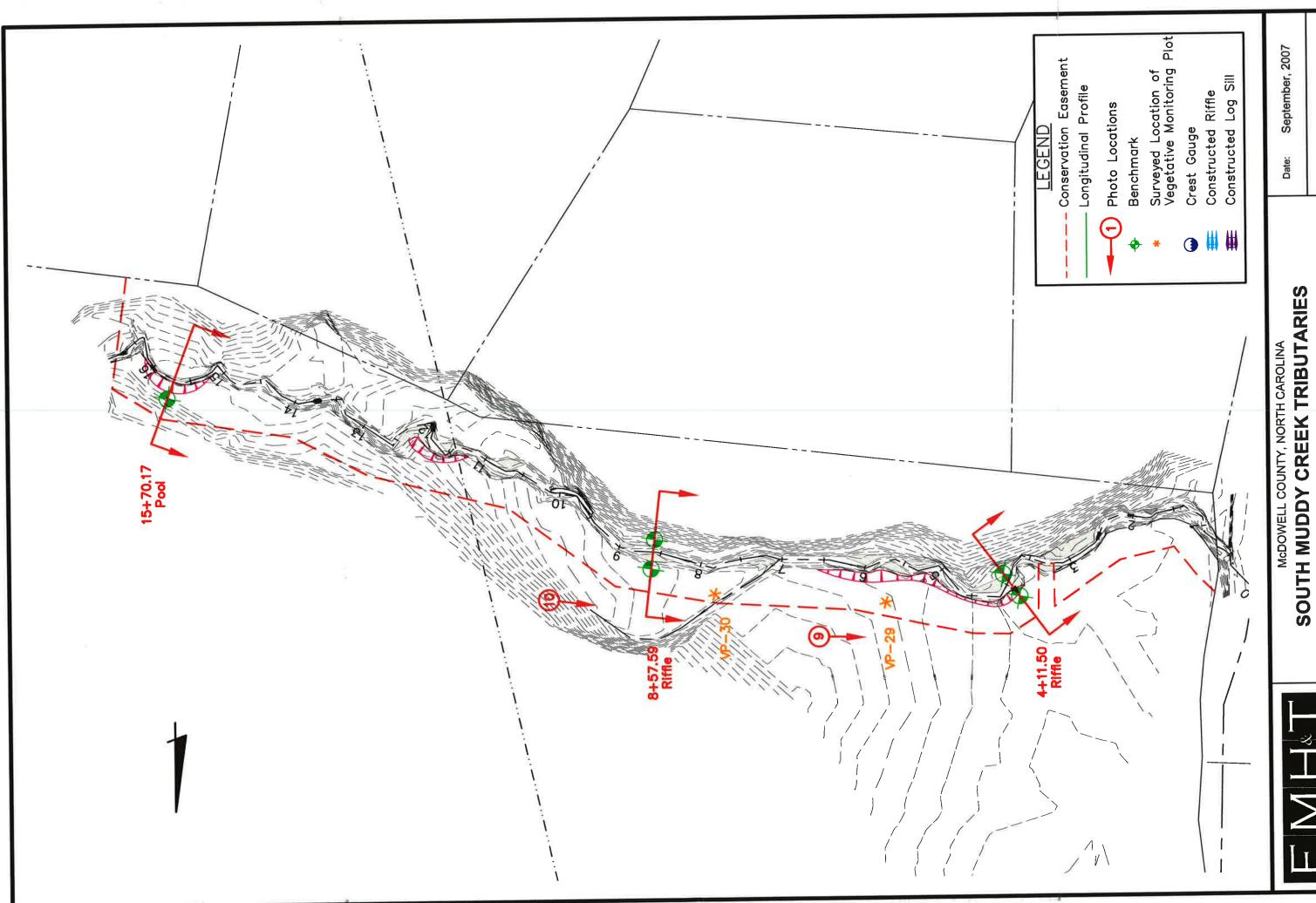


MONITORING FIGURE 2G TRIBUTARY A2 AND TRIBUTARY A - MIDDLE

1" = 100' Scale:

2006-1627

Job No:


McDOWELL COUNTY, NORTH CAROLINA
SOUTH MUDDY CREEK TRIBUTARIES

MONITORING FIGURE 2H TRIBUTARY A - UPPER

September, 2007 Date:

1" = 100' Scale:

2006-1627 Job No:

MONITORING FIGURE 21 TRIBUTARY C

1" = 100'

2006-1627 Job No:

III. PROJECT CONDITION AND MONITORING RESULTS

A. Vegetation Assessment

1. Soil Data

The project area is contained within the Iotla-Braddock-Rosman-Potomac soil association. This soil association typically consists of nearly level to very steep, somewhat poorly drained soils, which have a predominantly loamy, clayey or sandy subsoil formed in alluvium on floodplains and stream terraces (USDA, NRCS 1995).

The majority of Tributary A is mapped within Iotla sandy loam with 0-2% slopes, occasionally flooded. The upstream portion of the tributary flows through additional soil units including Elsinboro loam with 1-4% slopes, rarely flooded, Braddock clay loam with 6-15% slopes, eroded and Hayesville-Evard complex with 15-35% slopes. Tributary A2 is mapped in Iotla sandy loam. The portion of tributary B that is included in the restoration is mapped within Dillard loam, 1-4% slopes, rarely flooded. The portion of Tributary C that is included in the restoration is mapped within the Iotla sandy loam unit.

Data on the soils series found within and near the project site is summarized in Table VI.

Table VI. Preliminary Soil Data South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01								
Max. % Clay on % Organic Series Depth (in.) Surface K ¹ T ² Matter								
Braddock clay loam (BrC2)	80+	27-40	0.32	5	0-2			
Dillard loam (DdB)	80+	10-15	0.32	5	4-8			
Elsinboro loam (EsB)	60+	8-18	0.28	5	1-3			
Hayesville-Evard complex (HeD)	60+	7-25	0.24-0.28	5	1-5			
Iotla sandy loam (IoA)	60+	12-18	0.2	5	4-8			

¹Erosion Factor K indicates the susceptibility of a soil to sheet and rill erosion, ranging from 0.05 to 0.69. ²Erosion Factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity, measured in tons per acre per year.

2. Vegetative Problem Areas

Vegetative Problem Areas are defined as areas either lacking vegetation or containing populations of exotic vegetation. All problem areas identified during each year of monitoring are summarized in Table VII. Photographs of the vegetative problem areas are shown in Appendix A.

Table VII. Vegetative Problem Areas South Muddy Creek Stream Restoration / EEP Project No. D04006-01											
Feature/Issue	Station # / Range	Probable Cause	Photo #								
Invasive	Throughout: See VPA Plan View	Sericea lespedeza: encroachment from pasture	VPA 1, 2								
Population	102+25 (A Upper)	Kudzu: encroachment from roadside ditches	VFA 1, 2								

The only type of vegetative problem is the spread of two nonnative species. The first, sericea lespedeza, is a common component of pasture mixes and, as this project is adjacent to pasture lands, likely spread into the project area from the surrounding landscape. This species is present throughout the project corridor. Management for this species in 2009 included the continuation of herbicide treatments, begun in the fall of 2008. Further spraying will be conducted throughout the monitoring period as deemed necessary to enhance survival of the planted species. Since this species is being actively managed by herbicide treatment, and the woody stem counts are meeting performance standards, sericea lespedeza is considered a vegetative problem of low concern at this time.

A very minor population of kudzu (*Pueraria montana*) was identified near the downstream limit of the reach labeled Upper A. While the population of this species remains too small to have an impact on the desired vegetation at this time, it will be closely monitored to document and manage future spread of this invasive species.

3. Vegetation Problem Area Plan View

The location of each vegetation problem area is shown on the vegetative problem area plan view included in Appendix A. Each problem area is color coded with yellow for areas of low concern (areas to be watched) or red for high concern (areas where maintenance is warranted).

4. Stem Counts

A summary of the stem count data for each species arranged by plot is shown in Table VIII. Table VIIIa provides the survival information for planted species, while Table VIIIb provides the total stem count for the plots, including all planted and recruit stems. This data was compiled from the information collected on each plot using the CVS-EEP Protocol for Recording Vegetation, Version 4.0. Additional data tables generated using the CVS-EEP format are included in Appendix A. All vegetation plots are labeled as VP in Figure 2.

The average stem density of planted species for the site exceeds the minimum criteria of 320 stems per acre after three years and the allowable 10% mortality for 288 stems/acre after 4 years. Three individual plots have stem densities below these minimums, although the total density has increased for these plots from Year 3, and these three do meet the final criteria of 260 stems per acre after 5 years. In addition, a substantial number of recruit stems have been found in all plots. The recruit stems result in a 40% increase in the total stem density across the site, and bring nearly all plots into compliance with both the Year 3 and the Year 4 minimum criteria.

Remedial tree plantings have been conducted throughout the monitoring period. These were intended to bring deficient areas of the site back into compliance with the 320 stems per acre

minimum. Remedial plantings were first conducted in late April, 2007. Approximately 2,000 trees were planted at this time, including 500 trees along Tributary C, and 1,500 trees along the other reaches. These additional trees brought the average live stem density to 323 stems per acre in Year 2, an increase over the average live stem density of 284 stems per acre in Year 1. An additional round of remedial tree plantings were conducted in 2008, bringing the planted density total to 336 stems per acre. A final round of supplemental planting was conducted on April 7, 2009, at which time 1,000 stems of each of the following species were planted along the project streams:

Botanical Name	Common Name
Acer rubrum	Red maple
Alnus incana	Speckled alder
Aronia arbutifolia	Red chokeberry
Ilex verticillata	Winterberry
Platanus occidentalis	Sycamore
Quercus alba	White oak
Quercus velutina	Black oak

The remedial planting efforts have resulted in a net gain of woody stems for the entire site and the achievement of the minimum performance standard.

5. Vegetation Plot Photos

Vegetation plot photos are provided in Appendix A.

											each sp																			
	_				South	Mud Mud	ldy C	reek '	<u> Cribu</u>	taries	Resto	ratio	n / EF	CP Pro			<u> 4006-</u>	01												
		1 -	1 0		1 -					1 4	1 44		1 40	1 44		lots		- 40	10		-		1			26		1 20	1 00	
Species	 1	2	3	4	5	6	17	8	9	10) 11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	7 28	29	30
Shrubs		т .	_			_	1 .	_	_		r	_	_	_	· -								_						_	
Alnus serrulata	2	2 1	2	1	4	4	1		1				-	_		6	1						1 1	1	2			<u> </u>		
Aronia melanocarpa		ļ			_				_				_											1						
Cephalanthus occidentalis									<u> </u>	2	_																			
Cornus amomum	6	5	7		1	2	2	3	(6	10	2		2	1	1	1	5	1	2	3	2	6	1	1		1		3	
Cornus sp.					1	1														1										
Rosa multiflora	1																													
Sambucus canadensis												4					1													
Trees																														
Acer negundo																													2	5
Acer rubrum					2	75		11			2			11	1	6									4		3	3 2	1	
Betula nigra																									2	3	2	2 2		
Crataegus sp.										2		2		2									İ							
Fraxinus pennsylvanica	5	2	8	1	1	5	1	4	5		6	7	8	2	6	2	15	1	5	4	1	4	1	6		1	3	2	2	9
Juglans nigra																														1
Liriodendron tulipifera				2						1		1		3	2	3	2	3	2	3	2			2						
Pinus sp.																	1													
Platanus occidentalis	1		3		3			3	1	3	4	2	1	4	2			1	1	5	1	1	1	2	2	2			8	4
Prunus sp.																														1
Quercus alba					1		1	1	3				1	2	4	1	1		2		9		1	3						
Quercus michauxii	1		2	5											1	4		6							2		1	3	1	
Quercus phellos		2.		4		3		3			2	2	6	1			2	1		2	1								\Box	
Quercus pagoda										2			1	1											1	4	1	2		
Salix nigra		1				2	5		2							1										1		1		
Unknown																		1												
Year 4 Totals	16	11	22	13	13	92	10	25	18		24	20	17	28	17	24	24	18	11	17	17	7	10	16	14	11	11	13	17	20
Live Stem Density (stems per acre)	648	446		527	527	3726	405	1013		648	972	810		1134			972	729	446	689	689	284	405	648	567	446	446		689	
Average Live Stem Density (stems per acre)															77	72														

																							ed ste												
									So	uth N	Mudd	ly Cr	eek T	<u>'ribu</u>	taries	Res	torat	ion /	EEP :	Proje	ect N	o. D0	<u> 14006</u>	-01											
																ots																Year 2		Year 4	Survival
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	T'otals	Totals	Totals	Totals	%
Shrubs																															,				
Alnus serrulata	2	1	2	1	4	4	1		1							6	1						1	1	2			1			0	16	21	28	100%
Aronia melanocarpa																								1							0	0	0	1	100%
Cephalanthus occidentalis										2																					0	1	7	2	100%
Cornus amomum	6	5	7		1	2		3	6	6	10	2		2	1	1	1	5	1	2	3	2	5	1	1		1		3		64	67	66	77	100%
Sambucus canadensis												1					1														5	5	0	5	100%
Trees	-			J								4																			3	5	U]		10070
Betula nigra	-														T				Т						2	3	ા					0	8	7	100%
Betuta nigra	-										-	-		-					-	-			-	\dashv		ᅴ	-4	\dashv		-	- 0	U	0	/	100%
																										1									
Crataegus sp.										2		2		2																	0	0	0	6	100%
Fraxinus pennsylvanica	4	2	6	1		5	1	2	4		6	7	8	2	6	2	15	1	5	4	1	4		3		1	2	2	1	1	29	68	63	96	100%
Juglans nigra																														1	0	0	0	1	100%
Liriodendron tulipifera				2						1		1	Î	3	2	3	2	1	2	3	2			2							0	0	0	24	100%
Platanus occidentalis	1		3		2			3	1	3	4	2	1	4	2			1	1	5	1	1	1	2	2	2			6	4	19	19	20	52	
Prunus sp.																														1	0	0	0	1	100%
Quercus alba					1		1		3				1	2	4	1	1		2		7		1	3							34	34	32	27	79%
Quercus michauxii			2	5											1	3		6							2		1	3	1		0	0	0	24	100%
Quercus phellos		2		4		3		3			2	2	5	1			2	1		2	1										10	12	13	28	100%
Quercus pagoda										2			1	1											1	4	1	2			13	11	11	12	92%
Salix nigra						2	5		2							1										1		1			0	6	8	12	100%
Unknown																		1													0	0	0	1	100%
Year 4 Totals	13		20												16		23			16				13		11	7	9	11	7	210	239	249	404	100%
Live Stem Density (stems per acre)	527	405	810	527	324	648	324	446	689	648	891	810	648	689	648	689	932	648	446	648	608	284	324	527	405	446	284	365	446	284					
Average Live Stem Density (stems per acre)		545																																	

B. Stream Assessment

1. Hydrologic Criteria

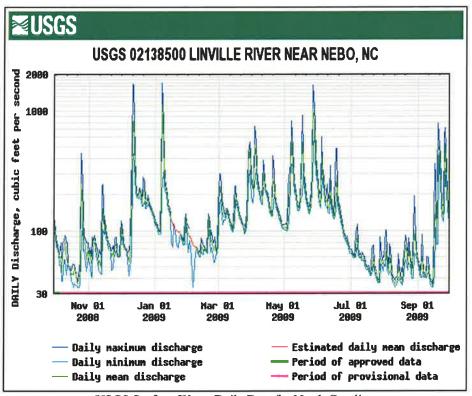
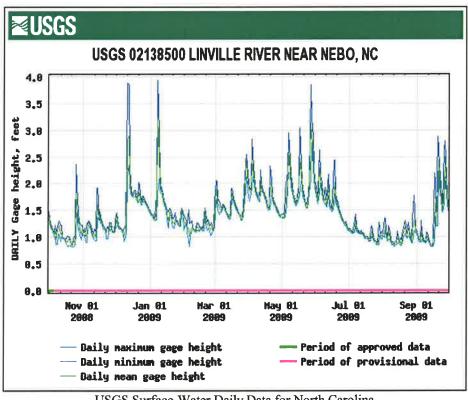

A network of six crest-stage stream gages was installed on each of the project reaches. The locations of the crest-stage stream gages are shown on the monitoring plan view (Figure 2). No bankfull events were documented for this site during the first year of monitoring. Bankfull events have been recorded during Years 2, 3 and 4, as documented in Table IX. Photographic documentation of the bankfull events is provided in Appendix B.

Table IX. Verification of Bankfull Events												
Date of Data	Date of Occurrence	Method	Photo #									
Collection												
7/18/07	Unknown	Crest gage at Station 5+00 on	BF 1									
		Tributary B										
7/18/07	Unknown (3 events)	Crest gage at Station 54+85 on	BF 2									
		Tributary A (Lower)										
10/19/07	9/14/07-9/15/07*	Crest gage at Station 113+37 on	BF 3									
		Tributary A (Upper)										
9/11/08	9/11/08	Photographed on-site	BF 4, 5, 6, 7									
9/21/09	1/6/09-1/8/09*	Five crest gages across the site	BF 8, 9, 10, 11, 12									


^{*}Date is approximate; based on a review of recorded rainfall data

In September 2009, the crest gages on Tributary A measure a registered a bankfull event at levels of 4.25" above the bottom of the crest gage on Upper A and 9.00" above the bottom of the crest gage on Middle A. The crest gages on Tributaries A2, B and C also documented a bankfull event, at heights of 5.5", 8.25" and 2.25" above the bottom of the crest gages, respectively. These crest gages are set at or above the bankfull elevation of each stream channel.

The most likely date for the bankfull event was after the rain events that occurred on January 6 and January 7, 2009. On these dates, rainfall as recorded in Rutherford, NC totaled 1.91 inches, with 1.03" on January 6 and 0.88" on January 7. As this was the largest precipitation event of significance since the documentation of the bankfull event in September 2008, this is likely the bankfull event recorded by the crest gages. This corresponds to a high discharge event on January 8, as recorded at USGS Gage 02138500 at Nebo, NC, which lies approximately 15 miles west of Morganton and 5 miles east of Marion, NC. Other large precipitation events occurred on December 10-11, 2008, with a total precipitation of 1.73" over the two days, and May 24-26, 2009, with a total precipitation of 1.32" over the three day period. The discharge and gage height recorded at the Nebo station are shown on the hydrographs below.

USGS Surface-Water Daily Data for North Carolina http://waterdata.usgs.gov/nc/nwis/dv?

USGS Surface-Water Daily Data for North Carolina http://waterdata.usgs.gov/nc/nwis/dv?

The documentation provided by the onsite crest gage network in Year 4 provided the third monitoring year with a bankfull discharge event, and the second monitoring year by which a bankfull event was documented by the crest gage network. No additional bankfull events are required to be documented for this project for the remainder of the monitoring period.

2. Stream Problem Areas

A summary of the areas of concern identified during the visual assessment of the stream for each year of monitoring is included in Tables Xa through Xd.

Table Xa. Stream Problem Areas – Year 1 South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01										
Feature Issue	Station Numbers	Suspected Cause	Photo Number							
Aggradation	4+50 (A2)	Large bar, 25 feet aggraded	SPA 1							
Aggradation	3+00 (A2)	Overwidened channel, 40 feet aggraded	(Year 1 Report)							
Bank failure	79+50 (A Middle)	Mat failed; scour hole, 5'	SPA 2, SPA 3							
Dank failure	12+10 (B)	Complete loss of riffle, bank failure.	(Year 1 Report)							
	103+00 (A Upper)	Large hole, scour (15 feet)								
	83+30 (A Middle)	Sloughing, coir log undercut and fallen into pool (15 feet)								
	82+70 (A Middle)	Sloughing, coir log undercut and fallen into pool (15 feet)								
	3+00 (A Lower)	Sloughing	SPA 4, SPA 5,							
Bank scour	19+70 (B)	Bank scour around log sill	SPA 6							
	18+50 (B)	Scour at outside meander bend; significant aggradation	(Year 1 Report)							
	16+00 (B)	Scour, matting loose and failing, bank slough								
	15+70 (C)	Bank scour/ sloughing								
	4+50 (C)	Bank scour/ sloughing								

Sout	Table Xb. Stream Problem Areas – Year 2 South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01											
Feature												
Issue	Numbers	Suspected Cause	Photo Number									
Bank failure		Complete loss of riffle, bank recovering as a	SPA 1									
Dalik lallule	12+10 (B)	result of thick vegetation.	(Year 2 Report)									
	85+64 (A Middle)	Minor bank erosion										
Bank scour	15+70 (C)	Bank scour/ sloughing	SPA 2									
		Bank scour/ sloughing; heavily vegetated and	(Year 2 Report)									
	4+50 (C)	stable										

Sout	Table Xc. Stream Problem Areas – Year 3 South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01											
Feature Issue	Station Numbers	Suspected Cause	Photo Number									
Bank failure	12+10 (B)	Complete loss of riffle; banks are heavily vegetated and stable	SPA 1,2 (Year 3 Report)									
	84+75 (A Middle)	Bank scour/sloughing approximately 20 feet from stream at top of slope										
Bank scour	85+64 (A Middle)	Minor bank erosion; heavily vegetated and stable	SPA 3,4									
Bank scour	16+50 (B)	Bank scour/sloughing on left bank	(Year 3 Report)									
	15+25 to15+70 (C)	Bank scour/ sloughing										
	4+11 to 4+50 (C)	Bank scour/ sloughing										

Table Xd. Stream Problem Areas – Year 4 South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01										
Feature Issue	Station Numbers	Suspected Cause	Photo Number							
Aggradation	2+18 - 4+50 (A2) 1+10, 6+00, 11+50, 13+80 (B)	Aggradation in channel is causing the stream to form wetland conditions. Structures are embedded in sediment.* Aggradation in channel is embedding log vanes under sediment.	SPA 1							
Bank failure	12+10 (B)	Complete loss of riffle; banks are heavily vegetated and stable	SPA 2							
	83+30 (A Middle) 84+75 (A Middle)	Sloughing on left bank: mid-channel bar forming downstream from this bank slump Bank scour/sloughing approximately 20 feet from stream at top of slope; heavily vegetated and stable								
Bank scour	19+70 (B) 16+50 (B)	Bank scour around log sill; heavily vegetated and stable Bank scour/sloughing on left bank; heavily vegetated and stable	SPA 3,4							
	15+25 to15+70 (C) 4+11 - 5+00 (C)	Bank scour/ sloughing; vegetated and stable Bank scour/ sloughing								
Engineered structure	0+00 (B)	Water is flowing beneath the log sill	SPA 5							

^{*}Area was repaired as part of monitoring/maintenance activities and will be revisited next monitoring period to verify stability.

A few potential problem areas were found along South Muddy Tributaries in Year 4, including areas of bank scour as noted in Table Xd. Tributaries B and C and the Middle section of Tributary A each had some areas of bank scour and/or bank erosion. The majority of those areas were first noted in a previous year, all of which have become heavily vegetated in Year 4, providing streambank stability. The new area of bank scour noted on Tributary B is expected to follow this same trend. The new area of bank scour found along Tributary A involves a small section of sloughing on the left bank, with a subsequent point bar forming downstream. Again,

the riparian corridor is densely covered by herbaceous vegetation, which is expected to stabilize the sloughing banks.

A few areas of bank scour have been noted on Tributary C in previous years of monitoring; these areas remain in Year 4. In addition, there are locations along this tributary with stream banks in danger of instability. These locations were not identified as areas for enhancement in the Restoration Plan, and as such, no restoration activities have occurred along these banks. Because these banks are remnants of an existing condition and do not appear to be progressing into further instability, they are not included in the monitored problem areas, but will be examined during future monitoring activities to ensure management activities along these stream banks does not become necessary to ensure the stability of restored areas.

Five areas of aggradation were noted in Year 4. Four structures along Tributary B were noted to have been affected by aggradation. Sand is the dominant streambed substrate in the project reaches and, as such, sediment deposition over the noted structures is attributed to high sediment supply readily available in the contribution watershed. Because the issue for these structures arises from depositional trends, rather than a concern with the physical structure, these areas are listed in the table as aggradation issues, not failed structures. It is noted that at all locations where the structures are embedded, the channel and streambanks are stable. The other area of noted aggradation involved the upstream portion on Tributary A2. This section of the stream was developing wetland vegetation within the stream channel, with heavy colonization by aquatic macrophytes. While the wetland vegetation is beneficial for water quality, the vegetation decreased flows, particularly during times of low flow, thereby allowing sediment to drop into the channel. This type of problem tends to exacerbate itself, as continuing sedimentation allows for further colonization and growth of wetland plants. This area was repaired and returned to a more stable design condition; however, it is still included in the problem area table as an area of low concern to document the issue and to revisit the area during the next monitoring event to verify stability.

The most downstream of the constructed log sills was noted to be non-functional along Tributary B. The channel appears to have downcut under this structure, allowing the water to flow under, rather than over the log sill as designed. This log sill will be fixed to return the grade control function of the structure.

3. Stream Problem Areas Plan View

The locations of problem areas are shown on the stream problem area plan view included in Appendix B. Each problem area is color coded with yellow for areas of low concern (areas to be watched) or red for high concern (areas where maintenance is warranted).

4. Stream Problem Areas Photos

Photographs of the stream problem areas are included in Appendix B.

5. Fixed Station Photos

Photographs were taken at each established photograph station on September 15 and September 16, 2009. These photographs are provided in Appendix B.

6. Stability Assessment Table

The visual stream assessment was performed to determine the percentage of stream features that remain in a stable state after the first year of monitoring. A summary of the assessment for each reach is included in Table XIa through Table XIf. This summary was compiled from the more comprehensive Table B1, included in Appendix B. Only those structures included in the as-built survey were assessed during monitoring and reported in the tables.

Table XIa. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A (Upper)														
Feature Initial MY-01 MY-02 MY-03 MY-04 MY-05														
A. Riffles ¹	100%	100%	100%	100%	100%									
B. Pools ¹	100%	100%	100%	100%	99%									
C. Thalweg	100%	100%	100%	100%	100%									
D. Meanders	100%	99%*	99%	100%	100%									
E. Bed General	100%	100%	100%	100%	100%									
F. Vanes / J Hooks etc. ²	N/A	N/A	N/A	N/A	N/A									
G. Wads and Boulders ²	N/A	N/A	N/A	N/A	N/A									

Table XIb. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A (Middle)															
Feature															
A. Riffles ¹	100%	100%	100%	100%	100%										
B. Pools ¹	100%	100%	100%	100%	100%										
C. Thalweg	100%	100%	100%	100%	100%										
D. Meanders	100%	96%*	99%	99%	98%										
E. Bed General	100%	100%	100%	100%	99%										
F. Vanes / J Hooks etc. 2	N/A	N/A	N/A	N/A	N/A										
G. Wads and Boulders ²	N/A	N/A	N/A	N/A	N/A										

Table XIc. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A (Lower)

Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles ¹	100%	100%	100%	100%	100%	
B. Pools ¹	100%	100%	100%	100%	100%	
C. Thalweg	100%	100%	100%	100%	100%	
D. Meanders	100%	99%*	99%	100%	100%	
E. Bed General	100%	100%	100%	100%	100%	
F. Vanes / J Hooks etc. ²	N/A	N/A	N/A	N/A	N/A	
G. Wads and Boulders ²	N/A	N/A	N/A	N/A	N/A	

Table XId. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: Tributary A2

Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles ¹	100%	97%*	100%	100%	89%**	
B. Pools ¹	100%	100%	100%	91%	71%**	
C. Thalweg	100%	100%	100%	100%	100%	
D. Meanders	100%	100%	100%	100%	100%	
E. Bed General	100%	93%*	100%	100%	100%	
F. Vanes / J Hooks etc. ²	N/A	N/A	N/A	N/A	N/A	
G. Wads and Boulders ²	N/A	N/A	N/A	N/A	N/A	

Does not reflect repairs made to the upper end of the reach.

Table XIe. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: B

Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles ¹	100%	99%*	99%	99%	92%	
B. Pools ¹	100%	100%	100%	100%	97%	
C. Thalweg	100%	100%	100%	100%	100%	
D. Meanders	100%	97%*	98%	100%	99%	
E. Bed General	100%	100%	100%	100%	100%	
F. Vanes / J Hooks etc. 2	N/A	N/A	N/A	N/A	N/A	
G. Wads and Boulders ²	N/A	N/A	N/A	N/A	N/A	
H. Log Sills	100%	97%*	100%	100%	97%	

Table XIf. Categorical Stream Feature Visual Stability Assessment South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: C

Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles ¹	100%	100%	100%	100%	100%	
B. Pools ¹	100%	100%	100%	100%	100%	
C. Thalweg	100%	100%	100%	100%	100%	
D. Meanders	100%	99%*	98%	98%	96%	
E. Bed General	100%	100%	100%	100%	100%	
F. Vanes / J Hooks etc. 2	N/A	N/A	N/A	N/A	N/A	
G. Wads and Boulders ²	N/A	N/A	N/A	N/A	N/A	

^{*} The percentages for Year 1 were updated, using the percentages derived from Table B1 in Appendix B, using the Feature Performance Mean percentages located in the last column of Table B1. The Feature Performance Mean percentages were used for Year 2; therefore, the percentages are now comparable across the years.

The visual stream stability assessment revealed that the majority of in-stream features are functioning as designed and built on the project reaches. Several of the stream reaches included unstable meanders, where minor erosion occurred along the outer bends. However, the meanders that had been in a state of degradation in previous years have improved through Year 4 due to the increased vegetative cover and associated root mass along the stream corridors. As the vegetation matures, the root mass is expanding in size, depth and density, enhancing streambank stability. As a result, overall percentage of stability improved on Tributaries Upper A, Lower A and B, indicating a trend in increased channel stability over time. The percentage of stability declined slightly on Tributaries Middle A and C, due to one additional meander with a limited amount of erosion on each reach, neither of which was considered to be worthy of maintenance at this time.

Aggradation is the cause for the percentages of instability noted under the riffle, pool and bed general categories along Tributaries Upper A, Middle A, A2 and B. A few pools were noted to have decreased in depth along Tributaries Upper A and B, all of which remain functional as pool features. A bar has formed along Tributary Middle A, as noted under the stream problem areas table. On Tributary B, the majority of the unstable riffles are associated with embedded features, again as noted under the stream problem areas table. As mentioned previously, sand is a dominant substrate in the watershed. As such, a high sediment supply is readily available for the project reaches, and the minor depositional trends seen in these project reaches is anticipated as a natural component of the system, rather than a concern with the physical structure of the project.

Aggradation is also the source of the unstable pools and riffles as noted on Tributary A2, although the level of aggradation found along this reach is greater than the condition of the other project reaches. As discussed previously, this section of the stream developed wetland vegetation, thereby allowing sedimentation, which continues the cycle for further colonization and growth of

¹The tables were completed to include a percentage of stability for pool and riffle features using the definitions provided below for the stream reaches along Tributary A.

Riffle: A portion of the linear stream segment located between two consecutive meander bends.

Pool: A portion of the curvilinear stream segment located in each meander bend.

²Those features not included in the stream restoration were labeled N/A. This includes features such as vanes, J-hooks, rootwads and boulders.

wetland plants. A few of the pools along this reach had become too shallow to function as pool features, and several of the riffle features were embedded under fine sediments. Maintenance activities were completed to return the channel to initial design standards.

On Tributary B, the majority of the installed log sills are functioning, with the exception of those noted to be under aggradation for the riffle feature category. However, the most downstream of the constructed log sills has lost its utility in maintaining grade control. As mentioned previously, this structure will be fixed to return the grade control function.

7. Ouantitative Measures

Graphic interpretations of cross-sections, profiles and pebble counts are provided in Appendix B. A summary of the baseline morphology for the site is included in Table XII for comparison with the monitoring data shown in the tables in the appendix. The data provided in Table XII for Year 1 reflects data from only the long-term monitoring reaches assessed along the Year 1 longitudinal profiles. The As-Built data documents the entire stream restoration project. The stream pattern data provided for Year 1 through Year 4 is the same as the data provided from the As-Built survey, as pattern has not changed based on post-construction stream surveys and comprehensive visual field assessments along each of the project reaches.

Bedform features continue to evolve along the restored reaches as shown on the long-term longitudinal profiles. Dimensional measurements of the monumented cross-sections remain stable, generally within the range of values measured in previous years. A few bankfull width and depth measurements have decreased, particularly along Upper A, Middle A, and A2, tributaries noted previously to have general aggradation. Comparisons of the yearly long-term stream monitoring data show successive increases in channel-floodplain connectivity and increasingly stable channel dimensions, interpreted from width/depth ratios, entrenchment ratios, bank height ratios, and channel geomorphologic parameters as shown on the long-term monitoring cross-sections. The exception to this occurred along Lower Tributary A, where entrenchment ratios have decreased slightly from the Year 3 measurements, yet remain within a stable range.

The comparison of the As-Built, Year 3 and Year 4 long-term stream monitoring profile data show successive increases in the development of pool/riffle features as compared to as-built conditions. Riffle lengths, pool lengths, and pool to pool spacings have steadily decreased from the as-built conditions, as pool and riffle features continue to develop in the appropriate positions along the reach, or have remained within the range found in previous years of monitoring. A few exceptions to these generalities occur on Tributaries A2 and B. On Tributary B, the riffle lengths have increased. On all reached of Tributary A, the decreased pool length corresponded to a decreased riffle length due to the development of additional pool and riffle features, thus a decreased pool to pool spacing. Tributary A2 has actually had an increase in pool to pool spacing. Aggradation along the upstream portion of this reach essentially filled in the pools to the degree that they have lost functionality, thus decreasing the number of pools and increasing the spacing between those that remain functional.

Median particle sizes of the stream channels ranged from silt to medium grained sand, following a trend of decreased median particle sizes from the as-built conditions, as fine particulates settle during low flows in the pools, and to a smaller extent, in riffle features. Remedial maintenance work on the restored reaches beyond that which was discussed under the problem area section of this report is not warranted at this time.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Upper Tributary A {Long-Term Monitoring Profile Station 0+00 to 9+71.47 (971.47 feet)}

		Referenc	Reach Da	ta ¹		XS 1	14+61.61,	-35.13								Monitorin	ıg		Monitorin	g	3	Monitorin	g		Monitorin	ng
Parameter	S. M	uddy Birchfield ²	S.	Muddy Tr	b 4 ²		Pre-Existi	ng		Design			As-Built	3		Year 1 ⁴			Year 24	VI.		Year 34			Year 44	
Dimension	Min	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi.2		1.3			0.14			1.38			1.38			1.38			1.38			1.38			1.38			1.38
Bankfull Width (Wbkf) - ft.		10.8			7.35			6.55			7.60	11.00	14.00	12.50	12.42	20.22	16.32	12.21	20.20	16.21	12.33	18.34	15.34	12.99	13.93	13.46
Flood Prone Width (Wfpa) - ft		100			43			9.12			50.00			50	38.82	65.6	52.21	39.19	51.52	45.36	51.83	57.62	54.73	52.36	58.38	55.37
Bankfull Cross-Section Area (Abkf) - fc		20.7			9.1			5.91			10.44	8.86	12.24	10.55	11.69	18.64	15.17	11.19	17.78	14.49	8.08	16.49	12.29	6.73	10.08	8.41
Bankfull Mean Depth (Dbkf) - ft		1.9			1.3			0.90			1.15	0.63	1.11	0.87	0.92	0.94	0.93	0.88	0.91	0.90	0.66	0.9	0.78	0.48	0.78	0.63
Bankfull Max Depth (Dmax) - ft		2.5			1.8			1.78			1.80	1.28	1.66	1.47	1.52	2.3	1.91	1.52	2.23	1.88	1.72	1.96	1.84	1.48	1.61	1.55
Width/Depth Ratio		5.6			6.1			7.28			6.61	9.91	22.22	16.07	13.21	21.98	17.60	13.45	22.95	18.20	18.68	20.38	19.53	16.65	29.09	22.87
Entrenchment Ratio (Wfpa/Wbkf		9.3			3			1.39			6.58	3.57	4.55	4.06	3.13	3.25	3.19	3.20	3.20	3.20	3.14	4.21	3.68	4.03	4.19	4.11
Bank Height Ratio		1.0			1.8			3.59			1.00			1.11	1.00	1.11	1.06	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Wetted Perimeter - ft.		14.6			9.95			8.35			9.09	12.00	14.38	13.19	13.15	20.95	17.05	12.85	20.90	16.88	13.00	18.93	15.97	13.40	14.41	13.91
Hydraulic radius - ft.		1.42			0.91			0.71			1.15	0.62	1.02	0.82	0.89	0.89	0.89	0.85	0.87	0.86	0.62	0.87	0.75	0.47	0.75	0.61
Pattern			a washing		Certin	JEG K NE			HSII, SS., V			AND AND THE		03274					Co. Berrio	S 3500	11-00			84.00	8 15	A
Belt Width (Wblt) - ft.					50				46.38	64.9		50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Radius of Curvature (Rc) - ft.					10						19.00	10.67	24.71	16.26	10.67	24.71	16.26	10.67	24.71	16.26	10.67	24.71	16.26	10.67	24.71	16.26
Meander Length (Lm) - ft					50				76	106.4		60	107	78.5	60	107	78.5	60	107	78.5	60	107	78.5	60	107	78.5
Meander Width Ratio (Wblt/Wbkf					6.8						6.58	3.57	4.55	4.00	2.47	4.03	3.25	2.48	4.10	3.29	2.73	4.06	3.39	3.59	3.85	3.72
Profile 3					TYPE ST	8	MIN TO			Marie Co.	THE STREET				78 KOVE (S	001	(ed.			VIII AND		وخاوم	N SI		Carlo carlo	
Riffle Length (Lrif) - ft.		16			10							23.8	130.3	53.3	10.6	92.4	31.6	8.03	52.4	23.19	8.06	63.49	22.05	8.71	41.62	20.88
Riffle Slope (Srif) - ft./ft.		0.026			0.032							0.0026	0.0069	0.0048	0.0014	0.0078	0.0038	0.0054	0.0112	0.0078	0.0028	0.0428	0.0185	0.0023	0.0280	0.0108
Pool Length (Lpool) - ft		9			24							26.8	96.8	46.8	42.6	99.6	73.7	30.14	64.32	49.74	30.31	55.18	42.2	15.47	48.48	26.59
Pool-Pool Spacing (p-p) - ft.		40			27							85.3	159.9	128.7	88.8	142.2	104.5	49.78	111.68	69.1	24.31	88.64	55.87	20.63	63.95	39.42
Substrate 3	19.85 N		BRUDE		1120/1		Y STA	11.4-11.5		Strainferen		ā Albe Y	Na Par					ELLEY.		TV T		12 KL		l Bursiii	DESCRIPTION OF THE PERSON OF T	
d ₅₀ (mm)		20			26						20			3.4			3.4			7.0			0.6			0.3
d ₈₄ (mm)		38			76						38			12.5			12.5			16.3			16.0			0.5
Additional Reach Parameters ³				SI SECUL	KY Z	1145	3724	SPAN A		18. 186		5/159-/		100		oct Cox				2012		Early sou	i i ka ha	Was her	d Paris	1 July 10 5
Valley Length (ft)					295			2520			1049			1097			614.48			661.40			660.86			660.86
Channel Length (ft)		236			479			2644			1539			1609			903.29			972.26			971.47			971.47
Sinuosity					1.6			1.05			1.47			1.47			1.47			1.47			1.47			1.47
Water Surface Slope (Save		0.006			0.022			0.0035			0.0030			0.0023			0.0025			0.0031			0.0028			0.0032
Bankfull Slope (Sval)		NA			0.025						0.0044			0.0033			0.0029			0.0026			0.0031			0.0030
Rosgen Classification		E4			E4			F/G			E4			C4			C4			C4			C5			C5
Bankfull mean velocity (Vbkf		4.73			6.59			4.40			1.98			1.96			1.36			1.29			1.52			2.22
Bankfull Discharge (Qbkf)		98			60			26.00			20.7			20.7			20.7			18.65			18.65			18.65

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

² S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Middle Tributary A {Long-Term Monitoring Profile Station 0+00 to 5+17.09 (517.09 feet)}

		R	eference l	Reach Dat	a¹		XS 1	14+61.61,	-35.13								Monitorir	ıg		Monitorin	ıg		Monitoria	ıg		Monitoria	ng
Parameter	S. M	uddy Birch	field ²	S. 1	Muddy Tri	b 4 ²]	Pre-Existi	ng		Design			As-Built	3		Year 14			Year 2 ⁴			Year 34	h.		Year 4 ⁴	,
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi.			1.3			0.14			1.38			1.38			1.38			1.38			1.38			1.38	Î		1.38
Bankfull Width (Wbkf) - ft.			10.8			7.35			6.55			8.00			15.00			14.63			14.68			14.55			13.76
Flood Prone Width (Wfpa) - ft			100			43			9.12			50.00			60.00			67.33			61.33	1		61.37	3		66.43
Bankfull Cross-Section Area (Abkf) - ft.			20.7			9.1			5.91	ĺ		12.00			12.61			16.62			15.35			15.48			13.54
Bankfull Mean Depth (Dbkf) - ft			1.9			1.3			0.90			1.00			0.84			1.14			1.05			1.06			0.98
Bankfull Max Depth (Dmax) - ft			2.5			1.8			1.78			2.00			1.50			2.38			2.11			2.24			2.26
Width/Depth Ratio			5.6			6.1			7.28			8.00			17.86			12.83			13.98			13.73			14.04
Entrenchment Ratio (Wfpa/Wbkf			9.3			3			1.39			6.25			4.00			4.60			4.18			4.22			4.83
Bank Height Ratio			1.0			1.8			3.59			1.00			1.11			1.11			1.11			1.10			1.00
Wetted Perimeter - ft			14.6			9.95			8.35			9.66			15.49			15.54			15.41			15.34			14.63
Hydraulic radius - ft.			1.42			0.91			0.71			1.24			0.81			1.07			1.00			1.01			0.93
Patter							P. Leading		NR S	X= 2 1 5		Puglant						10-10-1		The same			ands is				
Belt Width (Wblt) - ft.						50				48.80	68.32				60.00			60.00			60.00			60.00			60.00
Radius of Curvature (Rc) - ft						10						20.00	15.04	41.80	20.62	15.04	41.80	20.62	15.04	41.80	20.62	15.04	41.80	20.62	15.04	41.80	20.62
Meander Length (Lm) - ft						50				80.00	112.00		75.00	91.00	85.00	75.00	91.00	85.00	75.00	91.00	85.00	75.00	91.00	85.00	75.00	91.00	85.00
Meander Width Ratio (Wblt/Wbkf						6.8						6.25			4.00			4.10			4.09			4.12			4.36
Profile 3		TO SEC		0.77						18 10 11 1								5 6/201				834.33	(E.) (S)		A SEW W	100	
Riffle Length (Lrif) - ft.			16			10							36.5	72.5	52.3	28.2	70.8	46.5	5.8	17.8	11.9	54.3	56.9	55.6	9.0	52.6	20.6
Riffle Slope (Srif) - ft./ft.			0.026			0.032							0.0012	0.0032	0.0026	0.0020	0.0053	0.0033	0.0092	0.0139	0.0109	0.0030	0.0033	0.0032	0.0028	0.0144	0.0078
Pool Length (Lpool) - ft			9			24							18.4	42.5	34.1	14.7	57.2	29.5	26.4	40.8	33.2	27.2	50.1	38.8	11.9	51.4	29.1
Pool-Pool Spacing (p-p) - ft			40			27							49.8	83.6	66.5	64.5	87.6	78.3	42.5	133.0	78.9	44.1	97.6	70.6	22.0	96.7	43.8
Substra		Junta a		STIME STATE				leader.							NOVA PART						255		u crost	100000			1,320
d ₅₀ (mm)			20			26						20			0.23			0.23			<0.062			0.46			0.05
d ₈₄ (mm)			38			76						38			0.41			0.41			<0.062			1.19			0.24
Additional Reach Parameters ³									TANK	te siting							8_37000				3.12			S Van de	17.75		(P.,)
Valley Length (ft)						295			816			816			816			375.72			375.93			376.35			376.35
Channel Length (ft)			236			479			824			1203			1094			503.47			503.75			504.31			504.31
Sinuosity						1.6			1.01			1.47			1.34			1.34			1.34			1.34			1.34
Water Surface Slope (Save			0.006			0.022			0.0035			0.002			0.0017			0.0017			0.0018			0.0020			0.0022
Bankfull Slope (Sval)			NA			0.025						0.003			0.0020			0.0011			0.0016			0.0019			0.0024
Rosgen Classification			E4			E4			F/G			E4			C5			C5			C6			C5			C6
Bankfull mean velocity (Vbkf			4.73			6.59			4.40			1.71			1.63			1.23			1.34			1.32			1.51
Bankfull Discharge (Qbkf)			98			60			26.00			20.5			20.5			20.5			20.5			20.5			20.5

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Lower Tributary A {Long-Term Monitoring Profile No. 1 Station 0+00 to 5+80.47 (580.47 feet)}

		Refe	erence R	Reach Data	a ¹		XS	1+66.16, -	4.60								Monitoria	ng		Monitoria	ıg		Monitorii	ıg		Monitoria	ng
Parameter	S. M	uddy Birchfiel	ld ²	S. N	Muddy Tri	b 4 ²	1	Pre-Existii	ıg		Design			As-Built	3		Year 1 ⁴			Year 2 ⁴			Year 3 ⁴			Year 44	,
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi.			1.3			0.14			2.03			2.03			2.03			2.03			2.03	1		2.03			2.03
Bankfull Width (Wbkf) - ft			10.8			7.35			6.59			10.00	13.00	31.23	22.12			19.78			18.87			20.08			20.23
Flood Prone Width (Wfpa) - ft			100			43			10.41			60.00	60.00	82.28	71.14			71.26			49.74			79.89			62.05
Bankfull Cross-Section Area (Abkf) - ft2			20.7			9.1			4.89			20.16	7.10	30.36	18.73			19.46			17.12			19.50			21.44
Bankfull Mean Depth (Dbkf) - ft			1.9			1.3			0.74			2.80	0.55	1.16	0.83			0.98			0.91			0.97			1.06
Bankfull Max Depth (Dmax) - ft			2.5			1.8			1.39				1.00	2.57	1.79			2.02			1.91			2.08			2.04
Width/Depth Ratio			5.6			6,1			8.91			4.00	14.79	32.20	23.50			20.18			20.74			20.70			19.08
Entrenchment Ratio (Wfpa/Wbkf			9.3			3			1.58			6.00	2.63	4.62	3.22			3.60			2.64			3.98			3.07
Bank Height Ratio			1.0			1.8			5.85			1.00	1.00	1.00	1.00			1.28			1.29			1.24			1.00
Wetted Perimeter - ft.			14.6			9.95			7.34			12.32	13.28	23.59	16.76			20.21			19.29			20.53			20.76
Hydraulic radius - ft.			1.42			0.91			0.67			1.64	0.53	1.12	0.81			0.96			0.89			0.95			1.03
Pattern		SET IN						100		11/2 200	A 3-2-1										DW 160	ELLION.	7.338.		TO KIND	(88. 15. %	JUST 59
Belt Width (Wblt) - ft.						50				61.00	85.40				60.00			60.00			60.00			60.00	Ì		60.00
Radius of Curvature (Rc) - ft						10						25.00	15.22	39.94	24.86	16.70	26.55	21.70	16.70	26.55	21.70	16.70	26,55	21.70	16.70	26.55	21.70
Meander Length (Lm) - ft						50				100.00	140.00		90.00	145.00	107.00	90.00	145.00	107.00	90.00	145.00	107.00	90.00	145.00	107.00	90.00	145.00	107.00
Meander Width Ratio (Wblt/Wbkf					2	6.8						6.00	2.37	4.62	2.71			3.03			3.18			2.99			2.97
Profile 3				BXY E			5x/45 xx		51 12	14.50	9,24 (4)			1300		Settle V	of balls	Tam 18		W. S. HOLD	l veng	0.20 08		14000			
Riffle Length (Lrif) - ft.			16			10										27.90	41.90	32.20	10.30	34.35	22.45	30.07	46.37	35.59	10.81	34.46	20.75
Riffle Slope (Srif) - ft./ft.		0	0.026			0.032										0.0020	0.0072	0.0048	0.0035	0.0096	0.0057	0.0032	0.0063	0.0044	0.0013	0.0129	
Pool Length (Lpool) - ft			9			24										48.60	62.90	52.20	19.61	62.34	41.63	28.79	63.49	41.92	15.51	58.79	36.79
Pool-Pool Spacing (p-p) - ft.			40			27										51.50	88.70	72.30	59.63	87.76	73.55	30.32	100.11	72.24	35.14	85.15	64.72
Substrate ³			2		123 145		RELEGIE	ST COLUMN	20,7,011						5.11.6.6°	11 79			15-388	HEXES.	STREET,	Warn's	v Maliavia	TV S			0988
d ₅₀ (mm)			20			26									0.13			0.13			0.21			0.16		T	0.04
d ₈₄ (mm)			38			76									0.29			0.29			0.25			0.37			0.17
Additional Reach Parameters ³			(a) 50 A	FLIS 9			Selli 9-3		SHALE !	11-575-2				195		Hel b	W 15 19	SUSYI II	2000000	ii pii li	\$10) B		N 37 31		ME SAY		TO AND
Valley Length (ft)						295			5710			5164			5178			393.99			415.00			408.78			408.78
Channel Length (ft)			236			479			5948			7391			7349			559.46			589.30			580.47			580,47
Sinuosity						1.6			1.04			1.43			1.42			1.42			1.42			1.42			1.42
Water Surface Slope (Save		0	0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012			0.0010			0.0015			0.0016			0.0012
Bankfull Slope (Sval))	NA			0.025						0.0020	0.0007		0.00084			0.0012			0.0016			0.0012			0.0012
Rosgen Classification			E4			E4			F/G			Е			C5			C5			C5			C5			C6
Bankfull mean velocity (Vbkf		4	4.73			6.59			8.32			1.03			1.11			1.06			1.21			1.06			0.97
Bankfull Discharge (Qbkf)			98			60			40.7			20.70			20.70			20.7			20.7			20.7			20.7

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

⁴ Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Lower Tributary A {Long-Term Monitoring Profile No. 2 Station 0+00 to 6+23.77 (623.77 feet)}

			eference l				XS	1+66.16,	-4.60								Monitorin	ıg		Monitorii	ng		Monitoria	ıg		Monitori	ng
Parameter	S. M	uddy Birch	field ²	S.	Muddy Tri	b 4 ²		Pre-Existi	ng		Design			As-Built	.3		Year 1 ⁴			Year 2 ⁴			Year 3 ⁴			Year 4	4
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi?		10 E	1.3			0.14			2.03			2,03			2.03			2.03			2.03			2.03			2.03
Bankfull Width (Wbkf) - ft.			10.8			7.35			6.59			10.00	13.00	31.23	22.12			17.21			20.89			21.59			21.13
Flood Prone Width (Wfpa) - ft			100			43			10.41			60.00	60.00	82.28	71.14			31.25			38.54			39.52			35.97
Bankfull Cross-Section Area (Abkf) - ft.			20.7			9.1			4.89			20.16	7.10	30.36	18.73			8.87			15.80			15.78			9.93
Bankfull Mean Depth (Dbkf) - ft			1.9			1.3			0.74			2.80	0.55	1.16	0.83			0.52			0.76			0.73			0.47
Bankfull Max Depth (Dmax) - ft			2.5			1.8			1.39				1.00	2.57	1.79			1.17			1.34			1.37			0.94
Width/Depth Ratio			5.6			6.1			8.91			4.00	14.79	32.20	23.50			33.10			27.49			29.58			44.96
Entrenchment Ratio (Wfpa/Wbkf			9.3			3			1.58			6.00	2.63	4.62	3.22			1.82			1.84			1.83			1.70
Bank Height Ratio			1.0			1.8			5.85			1,00	1.00	1.00	1.00			1.28			1.00			1.00			1.00
Wetted Perimeter - ft.			14.6			9.95			7.34			12.32	13.28	23.59	16.76			17.46			21.12			21.82			21.21
Hydraulic radius - ft.			1.42			0.91			0.67			1.64	0.53	1.12	0.81			0.51			0.75			0.72			0.47
Pattern	9 E'Sugar			WENT E	last.		10.22						15.87		Caledia	The Report	AR CAN	i kata	L. Eukerij		1. O. V. 1.	Try 1870		a Biyari	Dill (S	e black	
Belt Width (Wblt) - ft.						50				61.00	85.40				60.00			60		ľ	60	İ		60	i		60
Radius of Curvature (Rc) - ft						10						25.00	15.22	39.94	24.86	15.22	39.94	23.19	15.22	39.94	23.19	15.22	39.94	23.19	15.22	39.94	23.19
Meander Length (Lm) - ft						50				100.00	140.00		90.00	145.00	107.00	90	145	107	90	145	107	90	145	107	90	145	107
Meander Width Ratio (Wblt/Wbkf						6.8						6.00	2.37	4.62	2.71			3.49			2.87			2.78			2,84
Profile 3	5-10-10-1				548888	110 1281	1741 20	7 3			Mars 31	UE de				447 145-2	E TENNET			W As a second	Tability of	10000	nëdite.				
Riffle Length (Lrif) - ft.			16			10										7.70	25.20	17.60	6.18	31.37	17.04	8.29	31.06	15.79	7.43	27.71	18.68
Riffle Slope (Srif) - ft./ft.			0.026			0.032										0.0056	0.0148	0.0098	0.0035	0.0194	0.0100	0.0035	0.0072	0.0056	0.0007	0.0113	0.0044
Pool Length (Lpool) - ft			9			24										39.90	86.90	60.30	27.07	37.05	33.37	30.05	43.45	38.11	14.19	52.71	30.62
Pool-Pool Spacing (p-p) - ft			40		U	27										50.70	95.20	74.50	64.70	109.76	89.03	72.48	109.52	93.55	35.14	85.15	64.72
Substrate ³									Y S	Trans.	V - 155 W	4 7 4 1	TERM.	7 2 3		3/48.5	Valley I			31.80	77 1988	13.9			8,A,2 0	The Parks	U EXERT
d ₅₀ (mm)			20			26									0.13			0.13			0.21			0.16			0.04
d ₈₄ (mm)			38			76									0.29			0.29			0.25			0.37			0.17
Additional Reach Parameters3	11925	Carrier,				THE WA	S. 175		60197				VENE LLY	11 2 X	W. W. C. S.	2.20	No. of Control of Cont	VT No. 2		C. William	10000	V 15-	10.00		91 S. S.		32 L S 8 1 N
Valley Length (ft)						295			5710			5164			5178			431.18			406.11			417.60			417.60
Channel Length (ft)			236			479			5948			7391			7349			612.27			576.68			592.99			592.99
Sinuosity						1.6			1.04			1.43			1.42			1.42			1.42			1.42			1.42
Water Surface Slope (Save			0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012			0.0014			0.0015			0.0013			0.0014
Bankfull Slope (Sval)			NA			0.025						0.0020	0.0007	0.0010	0.0008			0.0022			0.0017			0.0013			0.0039
Rosgen Classification			E4			E4			F/G			Е			C5	-		B5			B5			B5			B6
Bankfull mean velocity (Vbkf			4.73			6.59			8.32			1.03			1.11			2.33			1.31			1.31			2.08
Bankfull Discharge (Qbkf)			98			60			40.7			20.70			20.70			20,70			20.70			20.70			20.70

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Lower Tributary A {Long-Term Monitoring Profile No. 3 Station 0+00 to 5+36.67 (536.67 feet)}

		Re	eference l	Reach Dat			XS	1+66.16,	-4.60								Monitorin	ıg		Monitorir	ıg		Monitorir	ıg		Monitorin	ng
Parameter	S. M	uddy Birchfi	ield ²	S.	Muddy Tri	b 4 ²		Pre-Existi	ng		Design			As-Built	3		Year 14			Year 24			Year 34			Year 4 ⁴	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi?			1.3			0.14			2.03			2.03			2.03	1		2.03			2.03	i		2.03			2.03
Bankfull Width (Wbkf) - ft.			10.8			7.35			6.59			10.00	13.00	31.23	22.12			24.84			25.84	İ		23.02			23.39
Flood Prone Width (Wfpa) - ft			100			43			10.41			60.00	60.00	82.28	71.14			68.33			70.73			69.55			69.47
Bankfull Cross-Section Area (Abkf) - ft2			20.7			9.1			4.89			20.16	7.10	30.36	18.73			19.90			20.88	1		21.07			20.93
Bankfull Mean Depth (Dbkf) - ft			1.9			1.3			0.74			1.00	0.55	1.16	0.83			0.80			0.81			0.92			0.89
Bankfull Max Depth (Dmax) - ft			2.5			1.8			1.39			2.80	1.00	2.57	1.79			1.78			1.87			1.79			1.82
Width/Depth Ratio			5.6			6,1			8.91			4.00	14.79	32.20	23.50			31.05			31.90			25.02			26.28
Entrenchment Ratio (Wfpa/Wbkf			9.3			3			1.58			6.00	2.63	4.62	3.22			2.75			2.74			3.02			2.97
Bank Height Ratio			1.0			1.8			5.85			1.00	1.00	1.00	1.00			1.00			1.00			1.00			1.00
Wetted Perimeter - ft.			14.6			9,95			7.34			12.32	13.28	23.59	16.76			25.15			26.17			23.51			23.68
Hydraulic radius - ft.			1.42			0.91			0.67			1.64	0.53	1.12	0.81			0.79			0.80			0.90			0.88
Pattern	ER LESY	(Table) (S)	A-VANEU	11-31			and the			17.85			1 (200)			167 N. 153 V.	K Maryon				18 IR	200		1837	Section 1	19 800	
Belt Width (Wblt) - ft.						50				61.00	85.40	73.20			60.00			60.00			60.00			60.00			60.00
Radius of Curvature (Rc) - ft						10						25.00	15.22	39.94	24.86	19.56	32.82	29.53	19.56	32.82	29.53	19.56	32.82	29.53	19.56	32.82	29.53
Meander Length (Lm) - ft						50				100.00	140.00	120.00	90.00	145.00	107.00	90	145	107	90	145	107	90	145	107	90	145	107
Meander Width Ratio (Wblt/Wbkf	1					6.8						0.14	2.37	4.62	2.71			2.42			2.32			2.61			2.57
Profile 3	MARIS		Travelle.		113 W N. J					Berney	PHYSICA	An estili	die og	11 - 30		1 2 200	18.5			ik AV. za			D 0	0.000		MUSSSIRE	200
Riffle Length (Lrif) - ft.			16			10										13.70	46.80	28.00	13.75	22.00	16.69	10.92	40.53	25.79	6.86	36.80	16.31
Riffle Slope (Srif) - ft./ft.			0.026			0.032										0.0016	0.0151	0.0064	0.0031	0.0055	0.0044	0.0019	0.0066	0.0034	0.0020	0.0135	0.0057
Pool Length (Lpool) - ft			9			24										20.90	55.90	38.20	14.80	46.90	29.02	27.13	44.12	33.90	19.34	38.05	28.79
Pool-Pool Spacing (p-p) - ft			40			27			<u>. </u>							42.10	76.20	63.30	28.88	86.12	48.93	35.88	76.81	54.49	28.69	79.84	44.91
Substrate 3	-21	Michael D								W 5 7 E					10.0 th (2)	100	2 - 2 JW 1	g alan M	G POLETI	N 839 (\$	18 W	100					700, 1555
d ₅₀ (mm)			20			26									0.13			0.13			0.21			0.16			0.04
d ₈₄ (mm)			38			76									0.29			0.29			0.25			0.37			0.17
Additional Reach Parameters 3							ALCOHOL:	1			U SAN	100			REAL Y		2 10 8	I S CITED	5133				A TOTAL		(TE E E E		rei E
Valley Length (ft)						295			5710			5164			5178			359.28			358.82			377.94			377.94
Channel Length (ft)			236			479			5948			7391			7349			510.18			509.53			536.67			536.67
Sinuosity						1.6			1.04			1.43			1.42			1.42			1.42			1.42			1,42
Water Surface Slope (Save			0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012			0.0010			0.0007			0.0007			0.0011
Bankfull Slope (Sval)			NA			0.025						0.0020	0.0007	0.0010	0.0008			0.0022			0.0016			0.0008			0.0008
Rosgen Classification			E4			E4			F/G			Е			C5			C5			C5			C5			C6
Bankfull mean velocity (Vbkf			4.73			6.59			8.32			1.03			1.11			1.04			0.99			0.98			1.94
																											1 4,77

*Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

As-Built dimension data includes each riffle cross-sections in a described reach.

Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Lower Tributary A {Long-Term Monitoring Profile No. 4 Station 0+00 to 3+77.05 (377.05 feet)}

		Referen	e Reach Da	ıta ¹		XS	1+66.16,	-4.60								Monitorin	ıg		Monitorin	ıg		Monitorin	ıg	ľ	Monitorin	ng
Parameter	S. Mı	uddy Birchfield ²	S.	Muddy Tri	ib 4 ²]	Pre-Existi	ng		Design			As-Built	3		Year 1 4			Year 2 ⁴			Year 3 ⁴			Year 4 ⁴	
Dimension	Min	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi ²		1.3			0.14			2.03			2.03			2.03			2.03			2.03			2.03			2.03
Bankfull Width (Wbkf) - ft.		10.8			7.35			6.59			10.00	13.00	31.23	22.12			35.85			35.63			35.61			39.25
Flood Prone Width (Wfpa) - ft		100			43			10.41			60.00	60.00	83.00	71.50			83.00			82.94			82.90			82.82
Bankfull Cross-Section Area (Abkf) - ft2		20.7			9.1			4.89			20.16	7.10	30.36	18.73			40.43			37.04			35.45			43.45
Bankfull Mean Depth (Dbkf) - ft		1.9			1.3			0.74			2.80	0.55	1.16	0.83			1.13			1.04			1.00			1.11
Bankfull Max Depth (Dmax) - ft		2.5			1.8			1.39				1.00	2.57	1.79			2.78			2.62			2.46			2.94
Width/Depth Ratio		5.6			6.1			8.91			4.00	14.79	32.20	23.50			31.73			34.26			35.61			35,36
Entrenchment Ratio (Wfpa/Wbkf		9.3			3			1.58			6.00	2.63	4.62	3.23			2.32			2,33			2.33			2.11
Bank Height Ratio		1.0			1.8			5.85			1.00	1.00	1.00	1.00			1.00			1.00			1.00			1.00
Wetted Perimeter - ft.		14.6			9.95			7.34			12.32	13.28	29.74	16.76			36.37			36.22			36.07			39.87
Hydraulic radius - ft.		1.42			0.91			0.67			1.64	0.53	1.12	0.81			1.11			1.02			0.98			1.09
Pattern	100						abaton.		7 8 s		A M MAG	i di di di di di di di di di di di di di		11 - 610	A., 600		b and							(30%)		
Belt Width (Wblt) - ft.				1	50				61.00	85.40				60.00			60			60			60			60
Radius of Curvature (Rc) - ft					10						25.00	15.22	39.94	24.86	24.54	33.26	30.15	24.54	33.26	30.15	24.54	33.26	30.15	24.54	33.26	30.15
Meander Length (Lm) - ft					50				100.00	140.00		90.00	145.00	107.00	90	145	107	90	145	107	90	145	107	90	145	107
Meander Width Ratio (Wblt/Wbkf					6.8						6.00	2.37	4.62	2.71			1.67			1.68			1.68			1.53
Profile 3						00 = 0V			MY de			100			THE STATE	38	zen ar		57 - 57	i de v					ic Staff	11 381
Riffle Length (Lrif) - ft		16			10										14.40	20.70	17.50	5.74	24.74	14.11	13.32	28.12	19.73	12.06	30.36	18.36
Riffle Slope (Srif) - ft./ft.		0.026			0.032										0.0044	0.0070	0.0057	0.0031	0.0075	0.0051	0.0059	0.0134	0.0100	0.0010	0.0302	0.0088
Pool Length (Lpool) - ft		9			24										38.70	80.30	58.50	27.75	48.75	40.43	29.62	47.00	40.94	15.39	46.58	25.04
Pool-Pool Spacing (p-p) - ft		40			27										52.00	88.60	62.90	30.00	58.88	44.63	36.30	87.90	56.61	37.43	69.86	49.83
Substrate 3				10 pt 12 to	and the			14184		vent of	100	. ieni		SEEN WA	Del San	11,77 1,2	(A)	100 B	J. (1977)		W. G. 121	11.4	60 S2 U			
d ₅₀ (mm)		20	T		26									0.04			0.04			0.21			0.16		1	0.04
d ₈₄ (mm)		38			76									0.07			0.07			0.25			0.37			0.17
Additional Reach Parameters ³					W. T.		THE REAL PROPERTY.	58.67	8) /\$ 8 . S		IIN FE	E IS	7.00		8 8 L	Do Tao		1			1,000	JUN COM	SEVIT SAI	1 45 00	- AV 446	e ala
Valley Length (ft)	I		Ť –		295			5710			5164			5178			267.21			255.23	1		265.53			265.53
Channel Length (ft)		236			479			5948			7391			7349			379.44			362.42			377.05			377.05
Sinuosity					1.6			1.04			1.43			1.42			1.42			1.42			1.42			1.42
Water Surface Slope (Save		0.006			0.022			0.0019			0.0014	0.0012	0.0012	0.0012			0.0009			0.0015			0.0034			0.0029
Bankfull Slope (Sval)		NA			0.025						0.0020	0.0007	0.0010	0.0008			0.0004			0.0012			0.0014			0.0014
Rosgen Classification		E4			E4			F/G			Е			C5			C5			C5			C5			B6
Bankfull mean velocity (Vbkf		4.73			6.59			8.32			1.03			1,11			0.51			0.56			0.58			0.48
		98			60			40.7	_	-	20.70			20.70			20.70			20.70			20.70			20.70

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

² S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

⁴ Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Tributary A2 {Long-Term Monitoring Profile Station 0+00 to 1+96.06 (196.06 feet)}

		Referenc	e Reach Da	ıta ¹		XS 3	3+61.77, -2	16.17								Monitoria	ıg		Monitori	ng		Monitoria	 ng		Monitoria	ng
Parameter		uddy Birchfield ²		Muddy Tr	ib 4 ²		Pre-Existii	ng		Design			As-Built	3		Year 14			Year 24			Year 34			Year 4 ⁴	į .
Dimension	Min	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi.		1.3	4		0.14			0.27			0.27			0.27			0.27			0.27			0.27			0.27
Bankfull Width (Wbkf) - ft		10.8			7.35			7.09			5.00			17.85			21.43			21.74			22.31			21.25
Flood Prone Width (Wfpa) - ft		100			43			11.19			30.00			46.81			46.81			44.56			44.49		1	46.28
Bankfull Cross-Section Area (Abkf) - ft2		20.7			9.1			4.29			4.81			18.21			17.52			17.47			16.46			12.29
Bankfull Mean Depth (Dbkf) - ft		1.9			1.3			0.60			0.80			1.02			0.82			0.80			0.74			0.58
Bankfull Max Depth (Dmax) - ft		2.5			1.8			1.12			1.30			1.78			1.55			1.52			1.28		1	1.17
Width/Depth Ratio		5.6			6.1			11.82			3.85			17.65	- 12		26.13			27.17			30.15			36.64
Entrenchment Ratio (Wfpa/Wbkf		9.3			3			1.58			6.00			2.62			2.18			2.05			2,24			2.18
Bank Height Ratio		1.0			1.8			5.85			1.00			1.00			1.18			1.00			1.00			1.00
Wetted Perimeter - ft.		14.6			9.95			7.52			6.08			18.25			21.73			21.98			22.5			21.39
Hydraulic radius - ft.		1.42			0.91			0.57			0.79			1.00			0.81			0.79			0.73			0.57
Pattern				WH 24-			115			a da						7.9		-KS 1704		- W. T.		The state of		10 3 Page 1		
Belt Width (Wblt) - ft.					50				30.50	42.70	36.60			40.00			40.00			40.00			40.00		T	40.00
Radius of Curvature (Rc) - ft					10						12.50	8.19	14.26	12.00	8.19	14.26	12.00	8.19	14.26	12.00	8.19	14.26	12.00	8.19	14.26	12.00
Meander Length (Lm) - ft					50				50.00	70.00	60.00	47.00	57.00	51.00	47.00	57.00	51.00	47.00	57.00	51.00	47.00	57.00	51.00	47.00	57.00	51.00
Meander Width Ratio (Wblt/Wbkf					6.8						6.00			2,24			1.87			1.84			1.79			1.88
Profile 3			6 B	Table 12.		H. Mark		Section.				The state of	The state	E E I LEU X		Te in	N. William		SESTER SE			1 (27) Y				
Riffle Length (Lrif) - ft.		16			10							8.30	11.20	9.80	2.56	24.20	14.60	16.80	47.82	29.75	23.62	40.40	32.01	15.87	39.29	24.91
Riffle Slope (Srif) - ft./ft.		0.026			0.032							0.0534	0.0718	0.0626	0.0255	0.1033	0.0523	0.0155	0.0328	0.0242	0.0134	0.0296	0.0215	0.0092	0.0181	0.0134
Pool Length (Lpool) - ft		9			24							31.90	47.10	39.50	12.60	30.30	24.30	20.72	26.29	23.75	37.42	38.46	37.94	24.46	34.60	28.79
Pool-Pool Spacing (p-p) - ft		40			27							55.50	79.40	67.60	26.10	48.60	34.80	18.78	37.08	27.50	19.47	39.40	31.29	26.54	96.53	51.58
Substrate 3	NOTES -		(Circle)			_U_7_U^0	/20/138	Jan T				B. S/RIK	THE STATE OF			Sweet !	A SAME		2 34	45 Tar 13 H		is in a			E 10 50	Satistic
d ₅₀ (mm)		20			26						26															T
d ₈₄ (mm)		38			76						76		,													
Additional Reach Parameters ³	FU/Co/							Verenda	1156.34			2 212							10 H 14							
Valley Length (fil)					295			310			334			334			169.78			241.82			241.83			241.83
Channel Length (ft)		236			479			325			462		*	480			244.00			347.526			348.235	Section 1		348.235
Sinuosity					1.6			1.05			1.38			1.44			1.44			1.44			1.44			1.44
Water Surface Slope (Save		0.006			0.022			0.0156			0.0206			0.01025			0.0095			0.0069			0.0066			0.0081
Bankfull Slope (Sval)		NA			0.025						0.0284			0.01035			0.0080			0.0063			0.0067			0.0200
Rosgen Classification		E4			E4			F/G			E4			C4			C4			C4			C4			C4
Bankfull mean velocity (Vbkf		4.73			6.59			4.29			3.83			1.01			1.05			1.05			1.12			1.50
Bankfull Discharge (Qbkf		98			60			18.4			18.4			18.4			18.4			18.4			18.4			18.4

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

⁴ Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Tributary B {Upper Tributary B Long-Term Monitoring Profile Station 0+00 to 5+04.36 (504.36 feet)}

		Refe	erence R	Reach Dat	al		XS I	2+28.00,	35.88								Monitorir	ıg		Monitorin	ıg	1	Monitoria	ıg		Monitorin	ng
Parameter	S. Mı	uddy Birchfie	eld ²	S. N	Muddy Tri	b 4 ²		Pre-Existii	ng		Design) .		As-Built	3		Year 1 4			Year 2 ⁴			Year 34			Year 44	Į.
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi.			1.3			0.14			0.44			0.44			0.44			0.44			0.44	1		0.44	Ì		0.44
Bankfull Width (Wbkf) - ft.			10.8			7.35			7.83			6.20	21.83	27.89	24.86			22.32			25.07			24.07			24.01
Flood Prone Width (Wfpa) - ft			100			43			11.86		L	45.38	61.75	69.12	65.44			61.75			61.79			57.39			61.22
Bankfull Cross-Section Area (Abkf) - ft.			20.7			9.1			4.86			7.36	12.07	18.21	15.14			18.70			20.79			19.96			18.63
Bankfull Mean Depth (Dbkf) - ft			1.9			1.3			0.62			1.60	0.55	0.65	0.60			0.84			0.83			0.83			0.78
Bankfull Max Depth (Dmax) - ft			2.5			1.8			1.22				1.52	1.67	1.60			2.06			2.18			2.07			2.19
Width/Depth Ratio			5.6			6.1			12.63			3.88	39.69	42.91	41.30			26.57			20.79			29.00			30.78
Entrenchment Ratio (Wfpa/Wbkf			9.3			3			1.51			7.32	2.48	2.83	2.66			2.77			2.47			2.38			2.55
Bank Height Ratio			1.0			1.8			4.40			1.00	1.00	1.00	1.00			1.00			1.00			1.00			1.00
Wetted Perimeter - ft.			14.6			9.95			8.22			7.53	22.49	28.15	25.32			23.65			26.62			25.20			24.97
Hydraulic radius - ft.			1.42			0.91			0.59			0.98	0.54	0.65	0.60			0.79			0.79			0.79			0.75
Pattern	a fire		2.29	EWA TES			1177)33	WIR E	VE TO AN	in in the second		Manage	369		The State of	# 78 . YY	1000	2217.1	I CAT S	430 E 831		1.2.5	St. 1				2 36 3
Belt Width (Wblt) - ft.						50				45.38	52.95		50.00	50.00	50.00			50.00			50.00			50.00			50.00
Radius of Curvature (Rc) - ft.						10						15.50	10.20	19.38	14.05	12.95	19.38	16.79	12.95	19.38	16.79	12.95	19.38	16.79	12.95	19.38	16.79
Meander Length (Lm) - ft						50				62.00	86.80		60.00	80.00	70.00	60.00	80.00	70.00	60.00	80.00	70.00	60.00	80.00	70.00	60.00	80.00	70.00
Meander Width Ratio (Wblt/Wbkf	1					6.8						7.32	2.29	1.79	2.01			2.24			1,99			2.08			2.08
Profile ³	(FE) 35		THE ST	D: 18	of fact wi			45.00				-13 -44	o ex il		SEIX TO	Control of		MTchal.	TE LESS				ADD AT	58 Mb	a de se de	delve a	
Riffle Length (Lrif) - ft.			16			10										13.10	15.60	14.40	13.06	18.82	15.31	12.49	20.90	16.32	7.43	31.44	16.77
Riffle Slope (Srif) - ft./ft.		(0.026			0.032										0.0216	0.0754	0.0501	0.0160	0.0497	0.0396	0.0254	0.0577	0.0439	0.0058	0.0569	0.0262
Pool Length (Lpool) - ft			9			24										13.60	67.40	28.60	14.66	67.75	30.56	14.33	43.05	27.15	12.58	39.44	22.66
Pool-Pool Spacing (p-p) - ft			40			27										56.80	128.20	79.70	27.81	86.46	58.15	28.70	75.08	53.49	21.72	66.88	39.62
Substrate ³			400						13216		300	844	out in S	Wings U.S.	1000			Į.	William State	WHEN T	20 - 22 -	19: - 800					23 5 7 5
d ₅₀ (mm)			20			26			Ì						55.06			55.1			0.19			0.16			0.23
d ₈₄ (mm)			38			76									83.88			83.9			0.23			0.23			88.27
Additional Reach Parameters 3				J.F. 270			_ N - 40 _	1,-4		1 500	Tellare	7 1 3 5 1			NI		Total or the	N TORIG		els Tve	or all in		име пап			5,	
Valley Length (ft)						295			1360			1302			1312			324.86			326.20			323.31			323.31
Channel Length (ft)			236			479			1455			2052			2041			506.78			508.87			504.36			504.36
Sinuosity						1.6			1.07			1.58			1.56			1.56			1.56			1.56			1.56
Water Surface Slope (Save		0	0.006			0.022			0.0124			0.0123	0.0091	0.0099				0.0093			0.0090			0.0088			0.0086
Bankfull Slope (Sval)			NA			0.025						0.0078	0.0089	0.0097				0.0093			0.0100			0.0083			0.0055
Rosgen Classification			E4			E4			В			Е	E4	C4	C4			E4			C5			C5			C5
Bankfull mean velocity (Vbkf		4	4.73			6.59			4.20			2.77			1.35			1.09			0.98			1.02			1.10
Bankfull Discharge (Obkf			98			60			20.4			20.4			20,4			20.4			20.4		-	20.4			20.4

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

⁴ Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

Table XII. Baseline Geomorphologic and Hydraulic Summary South Muddy Creek Tributaries Stream Restoration / EEP Project No. D04006-01 Station/Reach: Tributary B {Lower Tributary B Long-Term Monitoring Profile Station 0+00 to 5+ 04.36 (504.36 feet)}

				ach Data ¹			XS :	12+28.00, -	-35.88								Monitorir	ıg		Monitorin	ıg		Monitoria	ıg		Monitoria	ng
Parameter	S. M	uddy Birchfield			uddy Trib			Pre-Existii	ng		Design			As-Built	3		Year 1 ⁴			Year 2 ⁴			Year 3 ⁴			Year 4 ⁴	
Dimension	Min	Max N	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Drainage Area - mi.			1.3			0.14			0.44			0.44			0.44			0.44			0.44			0.44			0.44
Bankfull Width (Wbkf) - ft.		1	0.8			7.35			7.83			6.20	21.83	27.89	24.86			27.35			28.85			32.79			30.94
Flood Prone Width (Wfpa) - ft		1	100			43			11.86			45.38	61.75	69.12	65.44			63.49			63.46			71.98	1		62.62
Bankfull Cross-Section Area (Abkf) - ft2		2	20.7			9.1			4.86			7.36	12.07	18.21	15.14			19.93			19.68			22,41			25.98
Bankfull Mean Depth (Dbkf) - ft			1.9			1.3			0.62			1.00	0.55	0.65	0.60			0.73			0.69			0.68			0.84
Bankfull Max Depth (Dmax) - ft			2.5			1.8			1.22			1.60	1.52	1.67	1.60			1.69			1.69			1.58			1.87
Width/Depth Ratio			5.6			6.1			12.63			3.88	39.69	42.91	41.30			37.47			41.38			48.22			36.83
Entrenchment Ratio (Wfpa/Wbkf		9	9.3			3			1.51			7.32	2.48	2.83	2.66			2.32			2.22			2.20			2.44
Bank Height Ratio			1.0			1.8			4.40			1.00	1.00	1.00	1.00			1.00			1.00			1.00			1.00
Wetted Perimeter - ft.		1	4.6			9.95			8.22			7.53	22.49	28.15	25.32			27.84			29.05			33.1			31.19
Hydraulic radius - ft.		1	.42			0.91			0.59			0.98	0.54	0.65	0.60			0.72			0.68			0.68			0.83
Pattern		Part of	-18-2								100 N-01			asylvi s					SEVAN N		7 / A SO	CHECK			STATE OF STATE		STA SCOOL
Belt Width (Wblt) - ft.						50				45.38	52.95		50.00	50.00	50.00			50.00			50.00		ľ	50.00	i	Ï	50.00
Radius of Curvature (Rc) - ft.						10						15.50	10.20	19.38	14.05	10.20	15.54	13.34	10.20	15.54	13.34	10.20	15.54	13.34	10.20	15.54	13.34
Meander Length (Lm) - ft						50				62.00	86.80		60.00	80.00	70.00	60.00	80.00	70.00	60.00	80.00	70.00	60.00	80.00	70.00	60.00	80.00	70.00
Meander Width Ratio (Wblt/Wbkf						6.8						7.32	2.29	1.79	2.01			1.83			1.73			1.52			1.62
Profile 3			311 111 32		Barry.	76. FA	S. Fall	H. File					131	ikas ir a	Tick I	The S		A CONTAIN					de i y		Transaction .	N. O. O.	V 10.3
Riffle Length (Lrif) - ft.			16			10										1.30	12.30	6.50	9.00	12.39	10.17	9.13	20.10	13.03	7.05	20.26	13.65
Riffle Slope (Srif) - ft./ft.		0.	026			0.032										0.0171	0.0934	0.0469	0.0275	0.0778	0.0444	0.0164	0.0405	0.0291	0.0050	0.0509	0.0170
Pool Length (Lpool) - ft			9			24										17.80	37.20	26.70	25.79	42.57	36.22	17.92	34.94	28.19	13.66	35.24	24.28
Pool-Pool Spacing (p-p) - ft.			40			27										41.60	60.80	47.70	20.06	47.07	34.09	39.31	56.52	45.78	25.11	54.18	47.07
Substrate 3			94.5		180			3 FLE 1 3/3		NG THE			V. 12 37	de Frank		WI ST	W-1 33 83	4 V-50-	E 15 K	F - 510	, manual	S07-71		in in the Co	100° - 17-2		
d ₅₀ (mm)		2	20			26									55.06			55.06			0.19			0.16			0.23
d ₈₄ (mm)		3	38			76									83.88			83.88			0.23			0.23			88.27
Additional Reach Parameters ³			W 38		THE WALE		5/14/4	NS BUT	2 /				Lusii e	JAIV		TRAN	ATRIAL SE	Q0150_10	TELES:	13 B		(III 22 E 25))	. 45 3		7 a.c.		
Valley Length (ft)						295			1360			1302			1312			324.86			326.20			323.31			323.31
Channel Length (ft)		2	36			479			1455			2052			2041			506.78			508.87			504.36			504.36
Sinuosity						1.6			1.07			1.58			1.56			1.56			1.56			1.56			1.56
Water Surface Slope (Save		0.0	006			0.022			0.0124			0.0123	0.0091	0.0099				0.0073			0.0067			0.0059			0.0052
Bankfull Slope (Sval)		N	IA			0.025						0.0078	0.0089	0.0097				0.0069			0.0070			0.0059			0.0032
Rosgen Classification		E	34			E4			В			Е	E4	C4	C4			C4			C5			C5			C5
Bankfull mean velocity (Vbkf		4.	73			6.59			4.20			2.77			1.35			1.02			1.04			0.91			0.79
Bankfull Discharge (Qbkf)			8			60			20.4			20.4			20.4			20,4			20.4			20.4	-		20.4

Data provided by Natural Systems Engineering (NSE) and used in the Restoration Plan for S. Muddy Tributaries

²S Muddy Birchfield Ref for Trib A; S. Muddy Trib 4 Ref for Tribs B & C

³As-Built dimension data includes each riffle cross-sections in a described reach.

⁴ Monitoring Year 1 thru 5 data is derived by EMH&T from the long-term profile reach only

Note: Where only two measurements were taken, they are listed as 'Min' and 'Max' values with no 'Med' value;

where only one measurement was taken, that is listed as a 'Med' value.

					Table X	III: M	orpholo	gy and H	lydrauli	. Monit	oring Su	mmary					
		S	outh M	uddy Cr	eek and	l Unnam	ed Trib	utaries S	Stream F	Restora	tion EEP	Project	No. D04	006-01			
					R	each: So	outh Mu	ddy Cre	ek Tribı	itary A	(Upper)						
Parameter		Cross S	Section (1	Riffle 1)			Cross	Section (Pool 2)			Cross	Section (1	Pool 3)			
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4		T
BF Width (ft)	16.87	12.42	12.24	18.34	12.99	23.29	11.41	11.55	12.51	15.28	23.36	7.94	5.58	16.65	15.38		
Floodprone Width (ft	45.59	38.82	39.19	57.62	52.36	50	54.3	56.97	36.04	65.66	50.02	27.8	26.76	49.97	49.42		
BF Cross Sectional Area (ft ²	17.25	11.69	11.19	16.49	10.08	28.22	9.69	10.89	11.37	11	26.86	4.46	3.64	13	11.78		
BF Mean Depth (ft)	1.02	0.94	0.91	0.9	0.78	1.21	0.85	0.94	0.91	0.72	1.15	0.56	0.65	0.78	0.77		
BF Max Depth (ft)	1.6	1.52	1.52	1.96	1.61	2.27	1.63	1.84	1.91	2.19	2.39	1.49	1,37	2.32	2.19		
Width/Depth Ratio	16.54	13.21	13.45	20.38	16.65	19.25	13.42	12.29	13.75	21.22	20.31	14.18	8.58	21.35	19.97		
Entrenchment Ratio	2.7	3.13	3.2	3.14	4.03	2,15	4.76	4.93	2.88	4.3	2.14	3.5	4.79	3	3.21		
Bank Height Ratio	1	1	1	1	I	1	1	I	1	1	31	1	1	1	1		
Wetted Perimeter (ft	17.28	13.15	12.85	18.93	13.4	23.78	12.03	12.3	13.31	16.19	24.07	8.72	6.28	17.74	16.31		
Hydraulic Radius (ft	1	0.89	0.87	0.87	0.75	1.19	0.81	0.89	0.85	0.68	1.12	0.51	0.58	0.73	0.72		
Substrate																	
D50 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
D84 (mm)	**	**	**	**	ole ole	**	**	**	**	**	**	**	**	**	**		

					Table X	III: M	orpholo	gy and H	Iydrauli	e Monit	toring Su	mmary					
		S	outh M	uddy Cr	eek and	l Unnam	ed Trib	utaries !	Stream I	Restora	tion EEP	Project	No. D04	006-01			
					R	each: So	outh Mu	ddy Cre	ek Tribi	ıtary A	(Upper)						
Parameter		Cross S	Section (1	Riffle 4)			Cross	Section (Pool 5)			Cross S	ection (F	Riffle 6)			
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4		
BF Width (ft	40.63	20.22	20.2	12.33	13.93	22.53	10.35	10.94	10.11	838	24.19	11.64	10.73	10.21	8.07		
Floodprone Width (fl	65.58	65.6	64.62	51.83	58.38	49.99	50	50.08	49.98	49.98	69.53	52.83	51.52	52.15	50.98		
BF Cross Sectional Area (ft ²	37.22	18.64	17.78	8.08	6.73	20.23	6.32	7.55	6.33	5.4	24.32	9.49	9.08	8.61	7.02		
BF Mean Depth (ft	0.92	0.92	0.88	0.66	0.48	0.9	0.61	0.69	0.63	0.64	1.01	0.82	0.85	0.84	0.87		
BF Max Depth (ft	2.39	2.3	2.23	1.72	1.48	1.83	1.59	1.47	1,51	1.67	2,26	1.8	1.56	1.7	1.74		
Width/Depth Ratio	44.16	21.98	22.95	18.68	29.02	25.03	16.67	15.86	16.05	13.09	23.95	14.2	21.62	12.15	9.28		
Entrenchment Ratio	1.61	3.25	3.2	4.21	4.19	2.22	4.83	4.58	4.94	5.96	2.87	4.54	4.8	5.11	6.32		
Bank Height Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Wetted Perimeter (ft	41.03	20.95	2.9	13	14.41	23.17	11.15	11.91	11.01	9.25	24,64	12.29	11.4	10.92	8.82		
Hydraulic Radius (ft	0.91	0.89	0.85	0.62	0.47	0.87	0.57	0.63	0.57	0.58	0.99	0.77	0.8	0.79	0.8		
Substrate																	
D50 (mm)		3.43	6.98	0.64	0.28	*	*	*	*	*	*	*	*	*	*		
D84 (mm)		12.48	16.32	16	0.5	**	**	**	**	**	**	**	**	**	**		

					Table 1	KIII: M	orpholo	gy and H	Iydrauli	c Monit	toring Si	ummary						
		S	South M	uddy Cr	eek and	d Unnam	ed Trib	utaries	Stream 1	Restora	tion EE	P Project	No. D04	1006-01				
					R	each: So	uth Mu	ddy Cre	ek Tribu	ıtary A	(Middle	e)						
Parameter		Cross	Section ((Pool 7)			Cross S	Section (Riffle 8)			Cı	ross Secti	ion				
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4			
BF Width (ft	23.38	16.43	13.36	16.49	17.48	36.65	14.63	14.68	14.55	13.76								
Floodprone Width (ft	50.01	57.22	57.37	57.93	50.05	67.33	67.33	61.33	61.37	66.43								
BF Cross Sectional Area (ft ²	22.96	17.6	16.33	16.22	14.63	38.26	16.62	15.35	15.48	13.54								
BF Mean Depth (ft	0.98	1.07	1	0.98	0.84	1.04	1.14	1.05	1.06	0.98								
BF Max Depth (ft)	2.02	1.83	1.88	1.9	1.85	2.76	2.38	2.11	2.24	2.26								
Width/Depth Ratio	23.86	15.36	16.36	16.83	20.81	35.24	12.83	13.98	13.73	14.04								
Entrenchment Ratio	2.14	3.48	3.51	3.51	2.86	1.84	4.6	4.18	4.22	4.83								
Bank Height Ratio	1	1	1	1	1	1	1	1	1	1								
Wetted Perimeter (ft	23.77	17.02	17.3	17.13	17.9	37.42	15.54	15.41	15.34	14.63								
Hydraulic Radius (ft	0.97	1.03	0.94	0.95	0.82	1.02	1.07	1	1.01	0.93								
Substrate																		
D50 (mm)	*	0.23	0.03	0.46	0.05	*	*	*	*	*								
D84 (mm)	**	0.41	0.05	1.19	0.24	**	**	**	**	**								

Table XIII: Morphology and Hydraulic Monitoring Summary

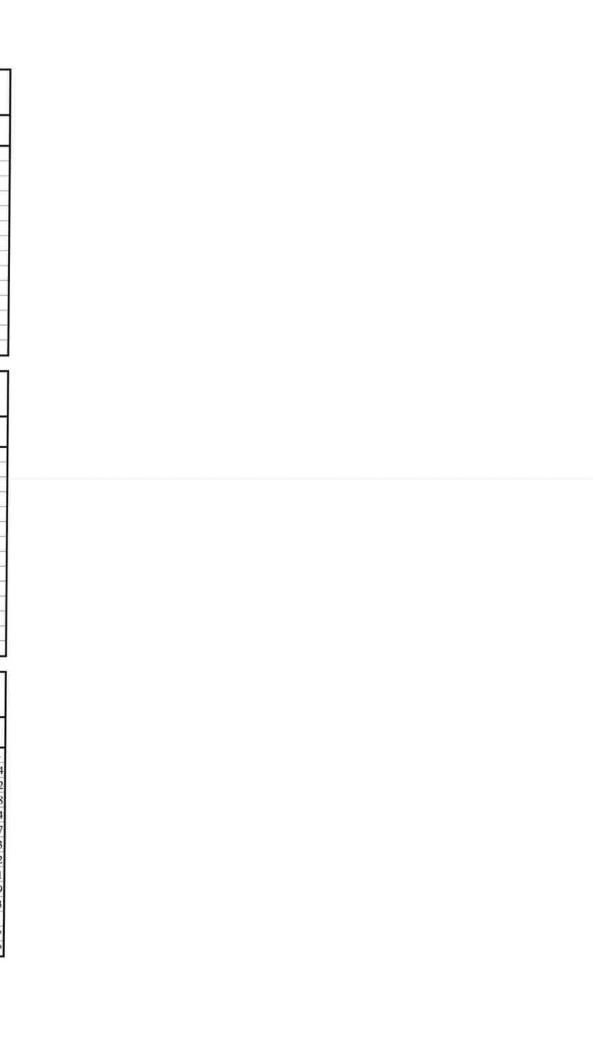
South Muddy Creek and Unnamed Tributaries Stream Restoration / EEP Project No. D04006-01

Reach: South Muddy Creek Tributary A (Lower)

Parameter		Cross	Section (Po	ol 9)			Cross S	ection (Riff	le 10)			Cross S	Section (Poc	l 11)			
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4		
Width (ft)	18.13	16.41	9.97	25.13	23	14.26	15.64	15.22	22.84	21.78	24.11	12.09	12.84	24.9	13.77		
Width (ft)	64	57.84	56.85	71.77	74.54	49.85	56.93	51.61	76.29	76.99	63.05	36.13	35.32	67.74	36.61		
Area (ft²)	17.68	11.12	8.11	14.99	17.05	12.6	12.63	12.24	19.71	21.78	21.29	8.61	6.92	22.26	7.76		
Depth (ft)	0.98	0.68	0.81	0.6	0.74	0.88	0.81	0.8	0,86	1	0,88	0.71	0,54	0.89	0.56		
Depth (ft)	1.91	1.84	1.78	1.86	2.25	1.65	1.88	1.79	2.25	2.32	1.72	1.34	1.23	1.88	1.19		
epth Ratio	18.5	24.13	12.31	41.88	31.08	16.2	19.31	19.02	26.56	21.78	27.4	17.03	23.78	27.98	24.59		
nent Ratio	3.53	3.53	5.7	2.86	3.24	3.49	3.64	3.39	3.34	3.53	2.62	2.99	2.75	2.72	2.66		
ight Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
imeter (ft)	18.66	17.86	11.11	26.29	24.1	14.69	16.36	15.68	23.37	22.77	24.4	12,51	13.11	25.25	13.99		
Radius (ft)	0.95	0.62	0.73	0.57	0.71	0.86	0.77	0.78	0.84	0.96	0.87	0.69	0.53	0.88	0.55		
ubstrate																	
D50 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
D84 (mm)	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**		

Table XIII: Morphology and Hydraulic Monitoring Summary South Muddy Creek and Unnamed Tributaries Stream Restoration / EEP Project No. D04006-01 Reach: South Muddy Creek Tributary A (Lower)

Parameter		Cross S	ection (Riff)	le 12)			Cross	Section (Poo	ol 13)			Cross S	ection (Riff	le 14)			
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4		
Width (ft)	25.57	19.78	18.87	20.08	20.23	27.9	16.15	13.93	22.88	23.27	34.14	17.21	20.89	21.59	21.13		
: Width (ft)	79.71	71.26	49.74	79.89	62.05	59.73	39.04	33.29	70	38.45	79.78	31.25	38.54	39.52	35.97		
l Area (ft²)	33.47	19.46	17.12	19.5	21.44	46.27	13.56	9.67	28.27	32.51	47.31	8.87	15.8	15.78	9.93		
Depth (ft)	1.31	0.98	0.91	0.97	1.06	1.66	0.84	0.69	1.24	1.4	1,39	0.52	0.76	0.73	0.47		
Depth (ft)	2.55	2.02	1.91	2.08	2.04	3.25	2.23	1.92	2.82	2.8	2.72	1.17	1.34	1,37	0.94		
epth Ratio	19.52	20.18	20.74	20.7	19.08	16.81	19.23	20.19	18.45	16.62	24.56	33.1	27.49	29.58	44.96		
ment Ratio	3.12	3.6	2.64	3.98	3.07	2.14	2.42	2.39	3.06	1.65	2.34	1.82	1.84	1.83	1.7		
eight Ratio		1	1	1	I	1	1	1	1	1	1	1	1	1	1		
rimeter (ft)	26.09	20.21	19.29	20.53	20.76	29.1	17.32	14.69	23.9	24.68	34.63	17.46	21.12	21.82	21.21		
Radius (ft)	1.28	0.96	0.89	0.95	1.03	1.59	0.78	0.66	1.18	1.32	1.37	0.51	0.75	0.72	0.47		
Substrate																	
D50 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
D84 (mm)	***	**	**	**	**	**	**	**	**	**	**	**	**	**	**		


Table XIII: Morphology and Hydraulic Monitoring Summary South Muddy Creek and Unnamed Tributaries Stream Restoration / EEP Project No. D04006-01 Reach: South Muddy Creek Tributary A (Lower)

Parameter		Cross	Section (Poo	ol 15)			Cross S	Section (Riff	le 16)			Cross S	Section (Poo	ol 17)			
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4		
Width (ft)	18.67	15.62	14.99	18.59	19.64	23.07	20.91	20.44	20.06	17.52	17.45	16.6	15.79	20.3	16.17		
Width (ft)	47.64	60.07	64.71	67.55	57.34	60.55	51.93	51.77	47.02	47.62	48.38	57.77	54.38	63.67	50.15		
l Area (ft²)	20.64	17.4	16.56	20.21	21.15	29.35	22.09	20.36	18.57	15.69	16.45	14.12	12.72	19.38	16.8		
Depth (ft)	1.11	1.11	1.1	1.09	1.08	1.27	1.06	1	0.93	0.9	0.94	0.85	0.81	0.95	1.04		
Depth (ft)	2.31	2.68	2.87	2.87	2.67	2.35	2.07	2.12	1.93	1.9	1.85	2.13	1.93	2.28	2.05		
epth Ratio	16.82	14.07	13.63	17.06	18.19	18.17	19.73	20.44	21.57	19.47	18.56	19.53	19.49	21.37	15.55		
ment Ratio	2.55	3.85	4.32	3.63	2.92	2.62	2.48	2.53	2.32	2.72	2.77	3.48	3.44	3.14	3.1		
eight Ratio	I	1	I	1	1	1	1	1	1	1	1	1	1	1	1		
rimeter (ft)	19.38	17.03	16.37	19.92	20.61	23.58	21.43	21.13	20.48	18	17.93	17.41	16.53	20.99	16.75		
Radius (ft)	1.06	1.02	1.01	1.01	1.03	1.24	1.03	0.96	0.91	0.87	0.92	0.81	0.77	0.92	1		
Substrate																	
D50 (mm)	*	*	*	*	*	*	0.13	0.06	0.16	0.04	*	*	*	*	*		
D84 (mm)	**	**	**	**	**	**	0.29	0.21	0.37	0.17	**	**	**	**	**		

					Table X	III: Mo	orpholog	gy and H	Iydrauli	c Monit	oring Su	mmary						
		S	South M	uddy Cr	eek and	l Unnam	ed Trib	utaries S	Stream I	Restorat	tion EEP	Project	No. D040	006-01				
					R	each: So	uth Mu	ddy Cre	ek Tribı	itary A	(Lower)							
Parameter		Cross S	ection (R	Riffle 18))		Cross S	ection (R	Riffle 19)			Cross S	ection (P	ool 20)				
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4			
BF Width (ft	31.23	24.84	25.84	23.02	23.39	35.22	12.09	12.2	19.9	21.26	12.61	15.34	14.95	23.89	24.13			
Floodprone Width (ft	82.28	68.33	70.73	69.55	69.47	80.47	27.84	27.98	45.24	59.44	42.51	67.84	67.47	63.27	68.79			
BF Cross Sectional Area (ft ²	30.36	19.9	20.88	21.07	20.93	46.76	5.67	5.34	14.16	18.06	12.43	18.13	16.59	28.17	31,25			
BF Mean Depth (ft	0.97	0.8	0.81	0.92	0.89	1,33	0.47	0.44	0.71	0.85	0.99	1,18	1.11	1.18	1.3			
BF Max Depth (ft)	2.57	1.78	1.87	1.79	1.82	3.1	1.14	1.11	1.46	1.81	2.02	2.74	2.62	3.24	3.35			
Width/Depth Ratio	32.2	31.05	31.9	25.02	26.28	26.48	25.72	27.73	28.03	25.01	12.74	13	13.47	20.25	18.56			
Entrenchment Ratio	2,64	2.75	2.74	3.02	2.97	2.28	2.3	2.29	2.27	2.8	3.37	4.42	4.51	2.65	2.85			
Bank Height Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Wetted Perimeter (ft	31.8	25.15	26.17	23.51	23.68	35.84	12.55	12.63	20.2	26.59	13.43	16.69	16.43	25.32	25.61			
Hydraulic Radius (ft	0.95	0.79	0.8	0.9	0.88	1.3	0.45	0.42	0.7	0.84	0.93	1.07	1.01	1.11	1.22			
Substrate																		
D50 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
D84 (mm)	**	**	**	**	**	**	**	**	**	**	**	**	**	**	冷湖			

					Table X	III: M	orpholo	gy and H	Iydrauli	c Monit	oring Su	ımmary						
		5	outh M	uddy Cr	eek and	l Unnam	ed Trib	utaries !	Stream 1	Restora	tion EEI	P Project	No. D04	006-01				
					R	each: So	uth Mu	ddy Cre	ek Trib	ıtary A	(Lower)) <u>.</u> .						
Parameter		Cross S	Section (Pool 21)			Cross S	ection (F	Riffle 22)			Cı	oss Secti	on				
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4			
BF Width (ft)	22.77	25.28	25.5	25.64	25.04	29.25	35.85	35.63	35.61	39.25								
Floodprone Width (ft	59.9	71.3	67.58	66.53	47.36	82.99	83	82.94	82.9	82.82								
BF Cross Sectional Area (ft ²	29.97	47.21	45.57	42.76	42.39	29.7	40.43	37.04	35.45	43,45								
BF Mean Depth (ft)	1.32	1.87	1.79	1.67	1.69	1.02	1.13	1.04	1	1.11								
BF Max Depth (ft)	2.59	3.75	3.6	3.39	3.44	2.51	2.78	2.62	2.46	2.94								
Width/Depth Ratio	17.25	13.52	14.25	15.35	14.82	28.68	31.73	34.26	35.61	35.36								
Entrenchment Ratio	2.63	2.82	2.65	2.59	1.89	2.84	2.32	2.33	2.33	2.11								
Bank Height Ratio	1	1	1	1	1	1	1	1	1	1								
Wetted Perimeter (ft	23.52	26.82	26.94	26.84	26.38	29.74	36.37	36.22	36.07	39.87								
Hydraulic Radius (ft	1.27	1.76	1.69	1.59	1.61	1	1,11	1.02	0.98	1.09								
Substrate																		
D50 (mm)	*	0.04	0.03	0.04	0.06	*	*	*	*	*								
D84 (mm)	**	0.07	0.05	0.28	0.21	**	**	**	**	**								

					Table X	III: M	orpholog	gy and H	[ydraulio	Monit	oring Su	mmary								
		S	outh M	uddy Cr	eek and	l Unnam	ed Trib	utaries S	Stream F	Restora	tion EEP	Project	No. D040	006-01						
						Reacl	h: South	Muddy	Creek T	ributa	ry B									
Parameter		Cross S	Section (Pool 1)			Cross S	Section (l	Riffle 2)			Cross S	Section (I	Pool 3)			Cross S	ection (Riffle 4)) -
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4
BF Width (ft)	12.33	10.08	10.11	29.56	28.18	21.83	22.32	25.07	24.07	24.01	17.61	9.93	9.78	31.52	27.4	27.89	27.35	28.55	32.79	30.94
Floodprone Width (ft	47.83	52.91	55.45	70	49.6	61.75	61.75	61.79	57.39	61.22	42.79	43.75	42.04	80	48.22	69.12	63.49	63.46	80	62.62
BF Cross Sectional Area (ft ²	10.68	9.41	9.64	26.75	22.35	12.07	18.7	20.79	19.96	18.63	1.1	5.57	5.2	20.11	16.33	18.21	19.93	19.68	22.41	25.98
BF Mean Depth (ft	0.87	0.93	0.95	0.9	0.79	0.55	0.84	0.83	0.83	0.78	0.63	0.56	0.53	0.64	0.6	0.65	0.73	0.69	0.68	0.84
BF Max Depth (ft)	2.25	2.16	2.24	3.02	2.42	1.67	2.06	2.18	2.07	2.19	1.58	1.42	1.39	2.15	1.92	1.52	1.69	1.69	1.58	1.87
Width/Depth Ratio	14.17	10.84	10.64	32.84	35.67	39.69	26.57	30.2	29	30.78	27.95	17.73	18.45	49.25	45.67	42.91	37.47	41.38	48.22	36.83
Entrenchment Ratio	3.88	5.25	5.48	2.37	1.76	2.83	2.77	2.47	2.38	2.55	2.43	4.41	4.3	2.54	1.76	2.48	2.32	2.22	2,44	2.02
Bank Height Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Wetted Perimeter (ft	13.76	11.36	11.5	30.97	29.38	22.49	23.65	26.22	25.2	24.97	18.15	10.56	10.46	32.21	28.72	28.15	27.84	29.05	33.1	31.19
Hydraulic Radius (ft	0.78	0.83	0.84	0.86	0.76	0.54	0.79	0.79	0.79	0.75	0.61	0.53	0.5	0.62	0.57	0.65	0.72	0.68	0.68	0.83
Substrate																				
D50 (mm)	*	0.04	0.03	0.16	0.23	*	*	*	*	*	*	*	*	*		*	*	*	*	*
D84 (mm)	**	0.18	0.05	0.4	0.47	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**

Table XIII: Morphology and Hydraulic Monitoring Summary South Muddy Creek and Unnamed Tributaries Stream Restoration / EEP Project No. D04006-01 Reach: South Muddy Creek Tributary A - 2 Cross Section (Pool 1) Cross Section (Riffle 2) Cross Section Parameter Dimension MY 0 MY 1 MY 2 MY 3 MY 4 MY 0 MY 1 MY 2 MY 3 MY 4 MY 0 MY 1 MY 2 MY 3 MY 4 BF Width (ft) 8.5 16.87 16.54 17.85 21.43 21.74 22.31 21.25 Floodprone Width (ft) 60.66 32.05 30.16 57.6 52.35 46.81 46.81 44.56 44.49 46.28 BF Cross Sectional Area (ft²) 19.02 12.64 5.16 12.05 9.74 18.21 17.52 17.47 16.46 12.29 BF Mean Depth (ft) 1.05 0.67 0.61 0.71 0.59 1.02 0.82 0.74 0.58 0.8 BF Max Depth (ft) 1.95 1.27 1.17 1.61 1.52 1.28 1.17 1.36 1.78 1.55 Width/Depth Ratio 17.18 12.64 13.93 23.76 28.03 17.5 26.13 27.17 30.15 36.64 Entrenchment Ratio 3.36 3.78 3.55 3.41 3.17 2.62 2.18 2.05 1.99 2.18 Bank Height Ratio Wetted Perimeter (ft) 18.52 8.92 8.85 17.26 16.82 18.25 21.73 21.98 22.5 21.39 Hydraulic Radius (ft) 1.03 0.64 0.58 0.7 0.58 0.81 0.79 0.73 0.57 Substrate D50 (mm) ** ** D84 (mm) ** ** ** ** ** **

					Table X	III: Mo	rpholog	y and H	ydraulic	Monito	ring Sum	mary					
		S	outh Mı	ıddy Cr	eek and	Unname	ed Tribu	itaries St	ream Ro	estoratio	on / EEP	Project :	No. D 040	006-01			
	_					Reac	h: South	1 Muddy	Creek T	ributar	у С						
Parameter		Cross S	Section (1	Pool 1)			Cross S	ection (R	iffle 2)			Cross S	ection (R	iffle 3)			
Dimension	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4	MY 0	MY 1	MY 2	MY 3	MY 4		
BF Width (ft)	3.67	6.78	7.4	8.65	6.95	11.17	11.25	11.24	12.39	11.63	6.89	7.45	6.67	6.37	8.17		
Floodprone Width (ft)	29.61	37.83	37.6	36.56	37.72	15.98	15.71	15.22	16.16	16.25	24.24	26.22	26.25	26.07	19.65		
BF Cross Sectional Area (ft²)	2.31	6.55	6.76	5.09	4.81	3.09	4.91	3.8	6.23	5.97	4.42	4.41	3.66	3.53	4.82		
BF Mean Depth (ft)	0.63	0.97	0.91	0.59	0.69	0.28	0.44	0.34	0.5	0.51	0.64	0.59	0.55	0.55	0.59		
BF Max Depth (ft)	0.89	1.42	1.24	0.88	0.96	0.53	0.79	0.61	0.75	0.76	0.91	0.91	1.04	1.02	1.07		
Width/Depth Ratio	5.83	6.99	8.13	14.66	10.07	39.89	25.57	33.06	24.78	22.8	10.77	12.63	12.13	11.58	13.85		
Entrenchment Ratio	8.08	5.58	5.08	4.23	5.42	1.43	1.4	1.35	1.31	1.4	3.52	3.52	3.94	4.09	2.4		
Bank Height Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Wetted Perimeter (ft)	4.28	7.95	8.51	9.37	7.57	11.47	11.4	11.33	12.57	12.87	7.49	7.97	7.09	6.75	8.48		
Hydraulic Radius (ft)	0.54	0.82	0.79	0.54	0.64	0.27	0.43	0.34	0.5	0.46	0.59	0.55	0.52	0.52	0.57		
Substrate																	
D50 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
D84 (mm)	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**		

^{*} D50 pebble information was not calculated (pebble counts were not collected).

^{**} D84 pebble information was not calculated (pebble counts were not collected).

IV. METHODOLOGY

Year 1 vegetation monitoring was conducted in September 2006 using the CVS-EEP Protocol for Recording Vegetation, Version 4.0 (Lee, M.T., Peet, RK., Roberts, S.R., Wentworth, T.R. 2006). Year 4 vegetation monitoring was conducted in September 2009 using the same protocol as used in Years 1 through 3. Year 1 stream monitoring was conducted in April 2007 to provide adequate time between the as-built survey (accepted in January 2007) and the Year 1 monitoring survey. Stream monitoring for Year 2 occurred in October 2007, to provide six months between the Year 1 and Year 2 surveys. Year 3 and 4 monitoring occurred in the fall of 2008 and 2009, respectively, to provide a full year between surveys. Subsequent stream monitoring will occur in the fall of Year 5 to continue to provide adequate time between surveys. Vegetation monitoring will continue to be conducted in the fall of each subsequent year of monitoring, providing a full year between vegetative surveys.

APPENDIX A

Vegetation Raw Data

- 1. Vegetation Problem Area Photos
- 2. Vegetation Problem Area Plan View
- Vegetation Monitoring Plot PhotosVegetation Data Tables

VPA 1
View of Sericea lespedeza growing along the riparian corridor of Tributary A (middle), near

Vegetation Plot 4.

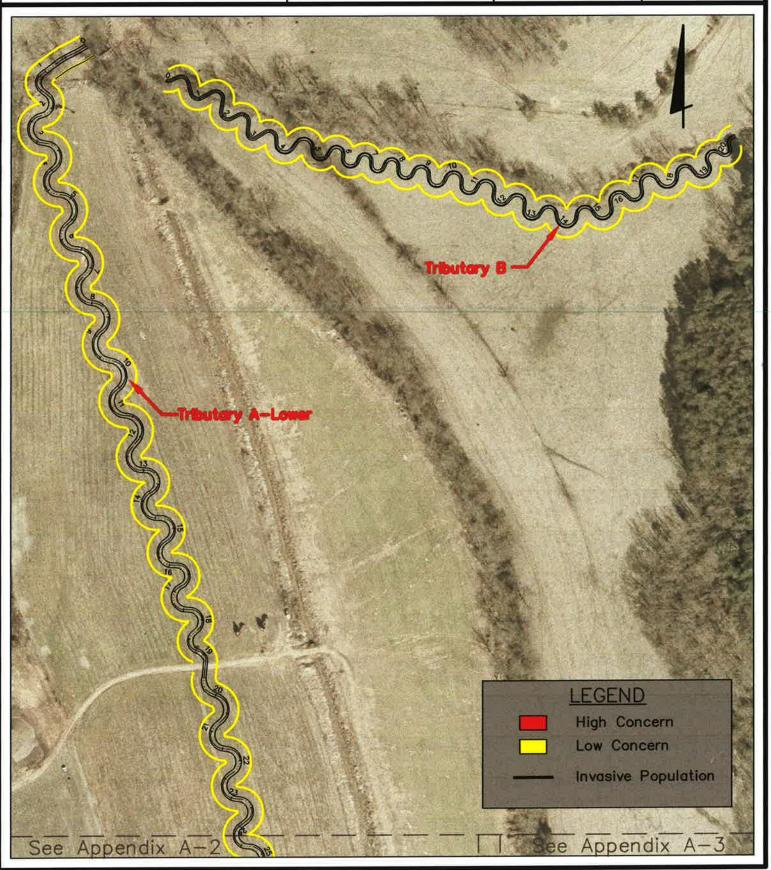
(EMH&T, Inc. 9/15/09)

VPA 2
View of Sericea lespedeza growing along riparian corridor of Tributary A (lower), at
Vegetation Plot 19.
(EMH&T, Inc. 9/15/09)

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614,775,4500 Fax: 614,775,4800

A C M X X V

McDOWELL COUNTY, NORTH CAROLINA


SOUTH MUDDY CREEK TRIBUTARIES

MONITORING YEAR 4

APPENDIX A-1
TRIBUTARY A - LOWER AND TRIBUTARY B

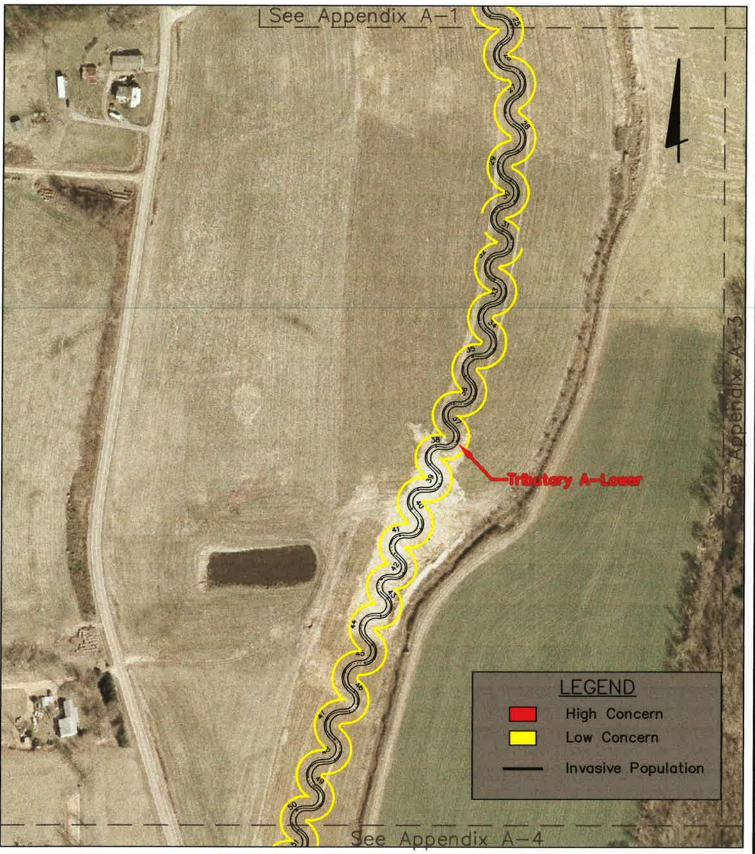
Date: November, 2009

Job No. 2006-1627

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614,775,4500 Fax: 614,775,4800

LAST SAVED BY JORAMER [11/10/2009 1:10:58 PM] - PLOTTED BY JORAMER [11/10/2009

HDATAO1 \ PROJECTO1 \ 20061627 \ 200616275NV \ DWC \ EXHIBITS \ OLDOO


McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

MONITORING YEAR 4 APPENDIX A-2 TRIBUTARY A-LOWER

Date: November, 2009

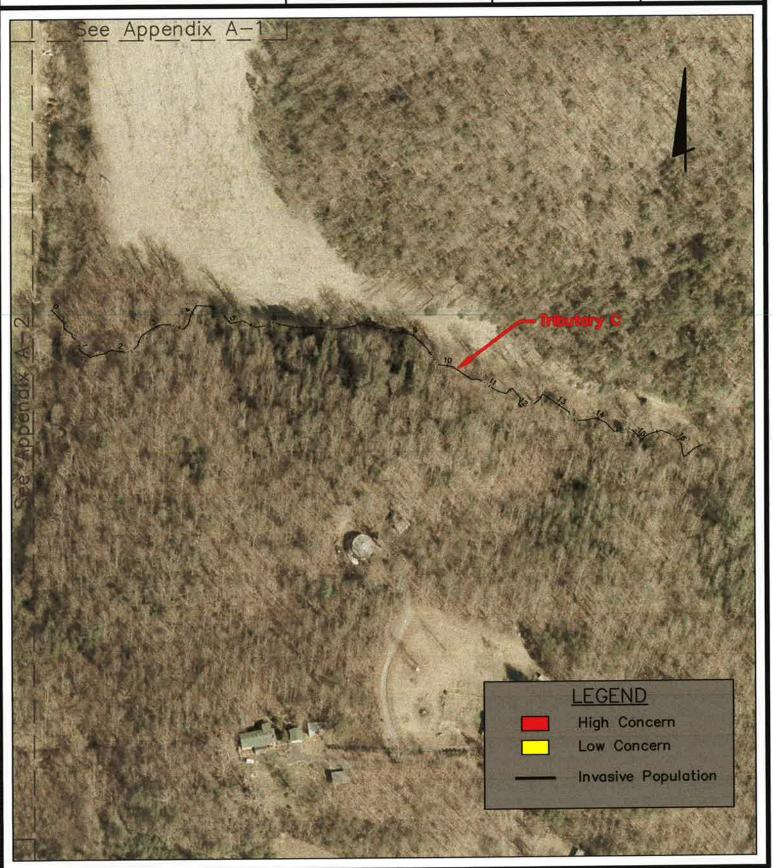
2006-1627 Job No.

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775.4500 Fax: 614.775.4800

м с м х х у

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES


MONITORING YEAR 4
APPENDIX A-3

TRIBUTARY C

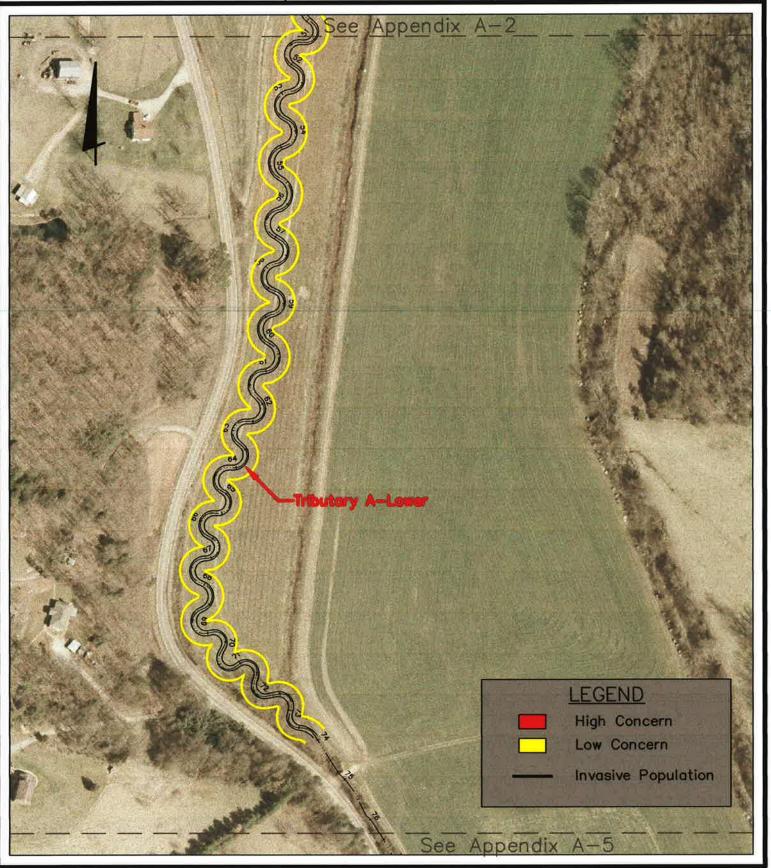
s: November, 2009 Job No. 2006

Date:

Job No. 2006-1627 | Scale: 1" = 500'

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775.4500 Fax: 614.775.4800

M C M X X V I


McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

MONITORING YEAR 4
APPENDIX A-4
TRIBUTARY A-LOWER

Date: November, 2009

Job No. 2006-1627

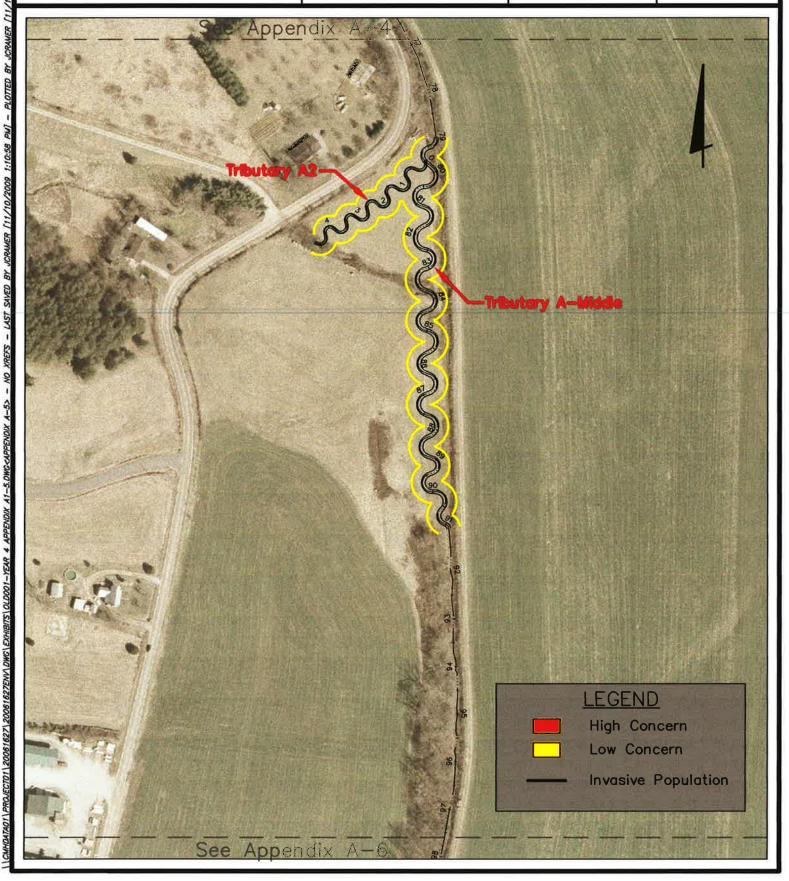
Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614,775.4500 Fax: 614,775.4800

C M X X V

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

MONITORING YEAR 4


APPENDIX A-5

TRIBUTARY A-MIDDLE AND TRIBUTARY A2

Date: Nov

November, 2009

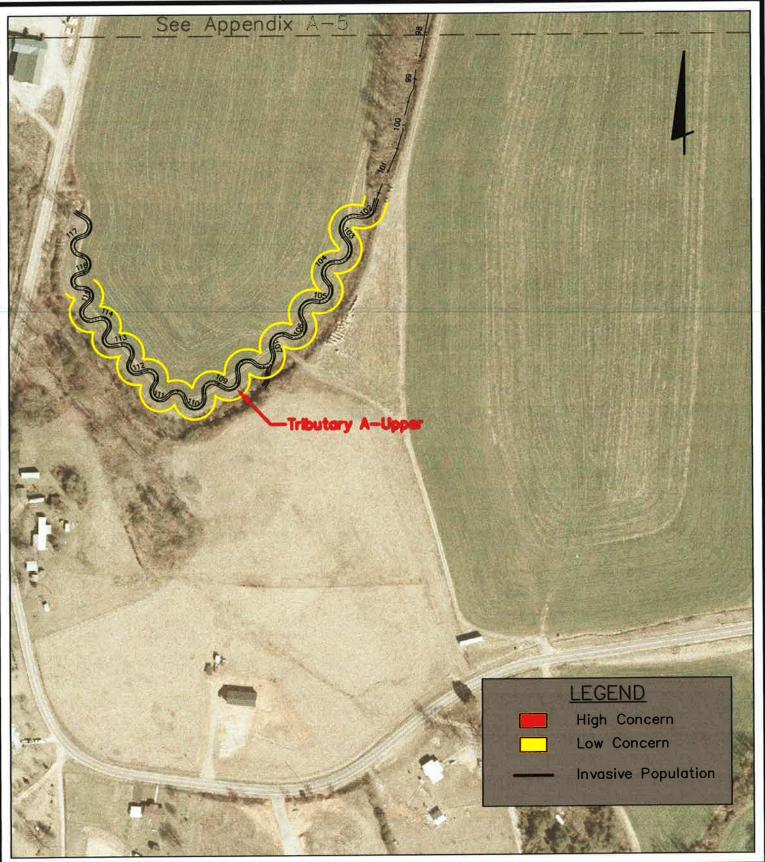
Job No. 2006-1627

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775.4500 Fax: 614,775.4800

С

LAST SAVED BY JCRAMER [9/29/2009 9:53:27 AM] — PLOTTED BY JCRAMER [9/29/2009 10:43:38 AM]

- NO XREFS


McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

MONITORING YEAR 4 APPENDIX A-6 TRIBUTARY A-UPPER

November, 2009 Date:

Job No. 2006-1627

Vegetation Plot 1 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 2 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 3 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 4 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 5 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 6 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 7 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 8 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 9 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 10 Monitoring Year 4 (EMH&T, Inc. 9/15/09)


Vegetation Plot 11 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 12 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 13 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 14 Monitoring Year 4 (EMH&T, Inc. 9/15/09)


Vegetation Plot 15 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 16 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 17 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 18 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 19 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 20 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 21 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 22 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 23 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 24 Monitoring Year 4 (EMH&T, Inc. 9/15/09)

Vegetation Plot 25 Monitoring Year 4 (EMH&T, Inc. 9/16/09)

Vegetation Plot 26 Monitoring Year 4 (EMH&T, Inc. 9/16/09)

Vegetation Plot 27 Monitoring Year 4 (EMH&T, Inc. 9/16/09)

Vegetation Plot 28 Monitoring Year 4 (EMH&T, Inc. 9/16/09)

Vegetation Plot 29 Monitoring Year 4 (EMH&T, Inc. 9/16/09)

Vegetation Plot 30 Monitoring Year 4 (EMH&T, Inc. 9/16/09)

Report Prepared By	Holly Blunck
Date Prepared	6/18/2009 9:41
database name	cvs-eep-entrytool-v2.2.6.mdb
database location	Q:\ENVIRONMENTAL\Monitoring\EEP Vegetation Database
computer name	
file size	23855104
DESCRIPTION OF WORKSHEETS IN THIS DOCUM	TS IN THIS DOCUMENT
Metadata	
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot,
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	D0400601
project Name	South Muddy Creek
Description	Restoration of tributaries A, A2, B and C of South Muddy Creek
(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	UE UE

	Species	4	3	2	1	0	Missing
	Alnus serrulata	17	6	2	2		3
	Aronia melanocarpa		1				
	Betula nigra	6	1				1
	Cephalanthus occidentalis		1		1		
	Cornus amomum	56	18	3		3	9
	Crataegus		4	1	1		
	Fraxinus pennsylvanica	57	29	5	5	4	8
	Juglans nigra	1					6
	Liriodendron tulipifera	3	9	12			
	Platanus occidentalis	16	27	8	1	1	5
	Prunus		1				
	Quercus alba	23	1	3		2	
	Quercus michauxii	8	10	4	2		
	Quercus pagoda	11	1				2
	Quercus phellos	17	6	3	2		
	Salix nigra	11	1				
	Sambucus canadensis	3	1		1		
	Unknown				1		
TOT:	18	233	120	43	#	10	34

	Table 3. Vegetation Da	_						
	Species	All Damage Categories	ر (no damage)	Cut	Deer	Insects	Mowing	Unknown
	Alnus serrulata	28						1
	Aronia melanocarpa	1	1					
	Betula nigra	7	6					1
	Cephalanthus occidentalis	2	1					1
	Cornus amomum	77	71	1	4			1
	Crataegus	6	6					
	Fraxinus pennsylvanica	96			1			2
	Juglans nigra	1	1					
	Liriodendron tulipifera	24	23	1				
	Platanus occidentalis	52	51					1
	Prunus	1	1					
	Quercus alba	27	26					_ 1
	Quercus michauxii	24	23					1
	Quercus pagoda	12	12					
	Quercus phellos	28	26	1				1
	Salix nigra	12	11	1				
	Sambucus canadensis	5	4			1		
	Uknown	1	1					
OT:	18	404	384	4	5	1	0	10

	Table 4.Vegetation	Dam:	age h	v Pl	ot			
	plot	All Damage Categories	(no damage)	Cut	Deer	Insects	Mowing	Unknown
	D0400601-01-0001 (year 4)	13			1			
	D0400601-01-0002 (year 4)	13	10	2	1			
	D0400601-01-0003 (year 4)	24			2			
	D0400601-01-0004 (year 4)	15	14					1
	D0400601-01-0005 (year 4)	11	11					
	D0400601-01-0006 (year 4)	19		1				
	D0400601-01-0007 (year 4)	10	10					
	D0400601-01-0008 (year 4)	13	13					
	D0400601-01-0009 (year 4)	17	17					
	D0400601-01-0010 (year 4)	18	17					1
	D0400601-01-0011 (year 4)	25	25					
	D0400601-01-0012 (year 4)	22	20			1		1
	D0400601-01-0013 (year 4)	16	16					
	D0400601-01-0014 (year 4)	17	17					
	D0400601-01-0015 (year 4)	17	17					
	D0400601-01-0016 (year 4)	17	17					
	D0400601-01-0017 (year 4)	23	23					
	D0400601-01-0018 (year 4)	18						1
	D0400601-01-0019 (year 4)	12	12					
	D0400601-01-0020 (year 4)	16	14	1				1
	D0400601-01-0021 (year 4)	16	15					1
	D0400601-01-0022 (year 4)	7	7					
	D0400601-01-0023 (year 4)	10	10					
	D0400601-01-0024 (year 4)	15	15					
	D0400601-01-0025 (year 4)	11	11		T			
	D0400601-01-0026 (year 4)	13	13					
	D0400601-01-0027 (year 4)	9	6		1			2
	D0400601-01-0028 (year 4)	14	13					1
	D0400601-01-0029 (year 4)	11	11					
	D0400601-01-0030 (year 4)	7	7					
TOT:	30	449	430	4	5	1	0	9

		1		_	_	T	_	<u></u>	Τ=	_	4
	plot D0400601-01-0030 (year 4)	-	L	L	L	(n)	L	-	L	L	9
	plot D0400601-01-0029 (year 4)	-	L	_	L	L.	L	2	L	L	Ľ
	plot D0400601-01-0028 (year 4)	⊢	L	2	L	-	L	2	L	L	L
	plot D0400601-01-0027 (year 4)	⊢	L	3	L	-	L	-	L		2
	plot D0400601-01-0026 (year 4)	_	L	2	L	-	L		L		2
	plot D0400601-01-0025 (year 4)	⊢	Ļ		L	Ĺ	L	8	L	2	2
	plot D0400601-01-0024 (year 4)	\vdash	Ĺ		L	5	L	.,	L		-
	plot D0400601-01-0023 (year 4)	⊢	L		L	2		4	L	L	,
	plot D0400601-01-0022 (year 4)	⊢	L		L		L	_	L	_	è
	plot D0400601-01-0021 (year 4)	\vdash				8		_		3	10
]	plot D0400601-01-0020 (year 4)	⊢				2		4		3	5
	plot D0400601-01-0019 (year 4)	⊢	L			_		5	L	2	_
ļ	plot D0400601-01-0018 (year 4)					5		٢			
S	plot D0400601-01-0017 (year 4)	ᄂ				,		15	L	2	
fem	plot D0400601-01-0016 (year 4)	9				_		2	L	3	
Stem Count by Plot and Species - Planted Stems	plot D0400601-01-0015 (year 4)					٢		9	L	2	
ante	plot D0400601-01-0014 (year 4)					2	2	2		3	4
٦	plot D0400601-01-0013 (year 4)							8			-
ies	plot D0400601-01-0012 (year 4)					2	2	_		1	2
pec	plot D0400601-01-0011 (year 4)					10		9			4
<u>B</u>	plot D0400601-01-0010 (year 4)				2	9	2			-	3
ot a	plot D0400601-01-0009 (year 4)	1				9		4			1
<u>P</u>	plot D0400601-01-0008 (year 4)					3		2			3
힏	plot D0400601-01-0007 (year 4)	-						1			
8	plot D0400601-01-0006 (year 4)	4				2		5			
Ę	plot D0400601-01-0005 (year 4)	4				-					2
	plot D0400601-01-0004 (year 4)	7						1		2	
le 5.	plot D0400601-01-0003 (year 4)	2				7		9			3
Tab	plot D0400601-01-0002 (year 4)	1				2		2			
	plot D0400601-01-0001 (year 4)	2				9		4			1
	smajs #3vs	2	-	2.33	2	3.21	2	3.69	_	2	2.36
-	es and u	14	-	3	1	24 3	3	26	-	12	22
	# plots						(0)				
	Zm912 beanted Stems	28		_	2	11	9	96	_	24	52
	Species	Alnus serrulata	Aronia melanocarpa	Betula nigra	Cephalanthus occidentalis	Cornus amomum	Crataegus	Fraxinus pennsylvanica	Juglans nigra	Liriodendron tulipifera	Platanus occidentalis

	(+ ipa6) 0000-10 10000-05	T	Т	Т	Т	T	ெ	T	Т	Т	Т	Т	Г	T	Г	Г	T	Г	4	Г	Ī-	n n	Г		20
	D0400601-01-0030 (year 4)	+-	╀	╀	┝	ا ا	2	H	╀	-	┝	-	H				H	-	8	-	H	2	F	H	17 2
	D0400601-01-0029 (year 4)	+	+	12	╀	╀	2	\vdash	╀	(n)	2	-	H	=	H	L	├		L	-	H	H	2	H	13 1
	D0400601-01-0028 (year 4)	-	╀	12	╀	F	ا ا	╀	╀	-	-	┞	H	-	H	H	┝	H		H	┞	⊢	8	H	7
	D0400601-01-0027 (year 4)	+	┝	8	┖	┝	-	-	╀	-	4	┝	H	-	H	L	┝	_	2	L	┝	⊢		H	1
	D0400601-01-0026 (year 4)	1-	L	2	_	<u>_</u>	H	╀	┡	2	-	L	H	L	L	L	L	L	2	L	H	⊢	4	_	
	D0400601-01-0025 (year 4)	1_	L	-	L	Ŀ	9	-	8			L	L	L			2	L	2	L	L	L	Ĺ	H	6 14
	D0400601-01-0024 (year 4)	1=	Ľ	L	L	L,	1-	L	=	L	L	L	L	L	L	L	<u> </u>		-		L	L	L		16
	D0400601-01-0023 (year 4)	+	L	Ļ	L		4	L	Ĺ	L	L		L	L			L				L	L	L	Ш	7 10
1	D0400601-01-0022 (year 4)	⊢	L	L	L		L	L	L	L	_	L		L	L	L		L		L	L	L			
	D0400601-01-0021 (year 4)	-	L	L				L	6	_						15.00	2			L	L	L			17
	D0400601-01-0020 (year 4)	L	L	L			4	L	L	L	L	2		L	L	_	8		5	L	L	L	_		17
	D0400601-01-0019 (year 4)	L		L			5	L	2	L					L		2			L					7
	D0400601-01-0018 (year 4)	-	L			2	\perp	L	L	9		_					33		1			L			18
	D0400601-01-0017 (year 4)	_	_				15		,5			2					2								24
اي	D0400601-01-0016 (year 4)	9	L			7	2	L	_	4				-			က						9		24
je	D0400601-01-0015 (year 4)					_	9		4	_							2		2				_		17
All Stems	D0400601-01-0014 (year 4)					2	2		2		_	7					3		4	2			11		28
	D0400601-01-0013 (year 4)						8		_		_	9							1						17
Species	D0400601-01-0012 (year 4)					2	7					2			4		-		2	2					20
<u>&</u>	D0400601-01-0011 (year 4)					10	9					2							4				2		24
and	D0400601-01-0010 (year 4)				2	9					2						-		8	2					16
Pet l	D0400601-01-0009 (year 4)	-				9	5		3					2					1						18
<u>ه</u>	D0400601-01-0008 (year 4)					3	4		_			3							3				11		25
Count by	D0400601-01-0007 (year 4)	~			Ι.	2	F		F					5											10
ု ပို	D0400601-01-0006 (year 4)	4				2	5					3		2		1							75		92
Stem	D0400601-01-0005 (year 4)	4				-	1		-							1			3				2		13
	D0400601-01-0004 (year 4)	-					7			5		4					2								13
Table	D0400601-01-0003 (year 4)	2				7	8			2									3						22
-	D0400601-01-0002 (year 4)	-				2	2					2		1											11
	D0400601-01-0001 (year 4)	2				9	2			7			7						7						16
	avg# stems	2	-	2	2	3	4	7	2	3	2	2	F	2	3	-	2	-	က	2	-	4	11	F	
	stolq #	14	-	4	1	25	28	1	13	10	7	12	1	7	2		12	-	22	3	1	2	Ίĺ	-	23
	zmat2 lstoT	28	-	6	2	80	117	1	30	26	12	29	1	13	5	3	26	-	22	9	1	7	118	-	572
				Н	is	Н				П			Н		Н		П		_		П	П	П	\neg	23
			pa		Cephalanthus occidentalis		vanica			æ					ensis		ifera		talis						. 4
	Species	ılata	Aronia melanocarpa	g	DO SUL	Cornus amomum	Fraxinus pennsylvanica	jra	ba	Quercus michauxii	Quercus pagoda	Quercus phellos	Rosa multiflora		Sambucus canadensis		Liriodendron tulipifera		Platanus occidentalis			opu	٤		
		Alnus serrulata	me	Betula nigra	lant	s an	d SD	Juglans nigra	Quercus alba	JS II	d Sr	d sr	III	igra	rcus	'n	ndrc		o sn	Crataegus	"	Acer negundo	Acer rubrum	ے	
		SD(onia	tula	pha	ľ	xin	glan	1ercu	erc	erc.	ierc	sar	Salix nigra	톕	Cornus	iode	Pinus	atan	atae	Prunus	ē	er r	Uknown	
		٩Ľ	Arc	Be	ပီ	ပိ	끄	η̈́	g	g	g	g	윤	Sa	Sa	ပိ	Ë	ij	풉	Ü	된	Ac	Åc	츼	
																									TOT
																									ĭ

APPENDIX B

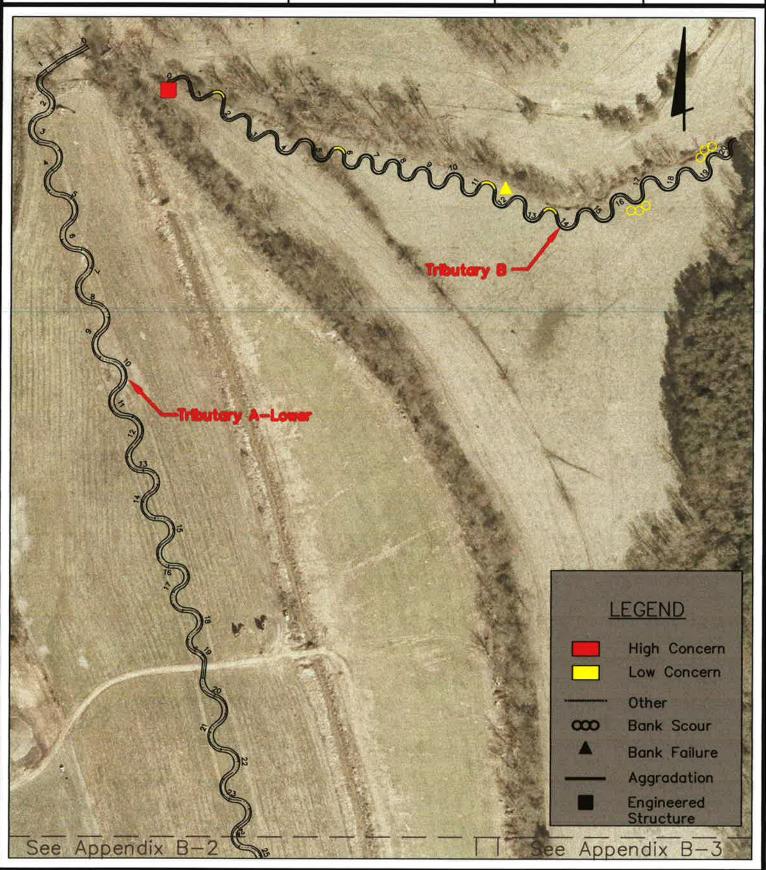
- **Geomorphologic Raw Data**1. Stream Problem Areas Plan View
 - 2. Stream Problem Area Photos
 - 3. Fixed Station Photos
- 4. Table B1. Qualitative Visual Stability Assessment
 - 5. Cross Section Plots
 - 6. Longitudinal Plots
 - 7. Pebble Count Plots
 - 8. Bankfull Event Photos

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614,775,4500 Fax: 614,775,4800

C M X X V

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES


YEAR 4 MONITORING

APPENDIX B-1
TRIBUTARY A - LOWER AND TRIBUTARY B

Date:

November, 2009

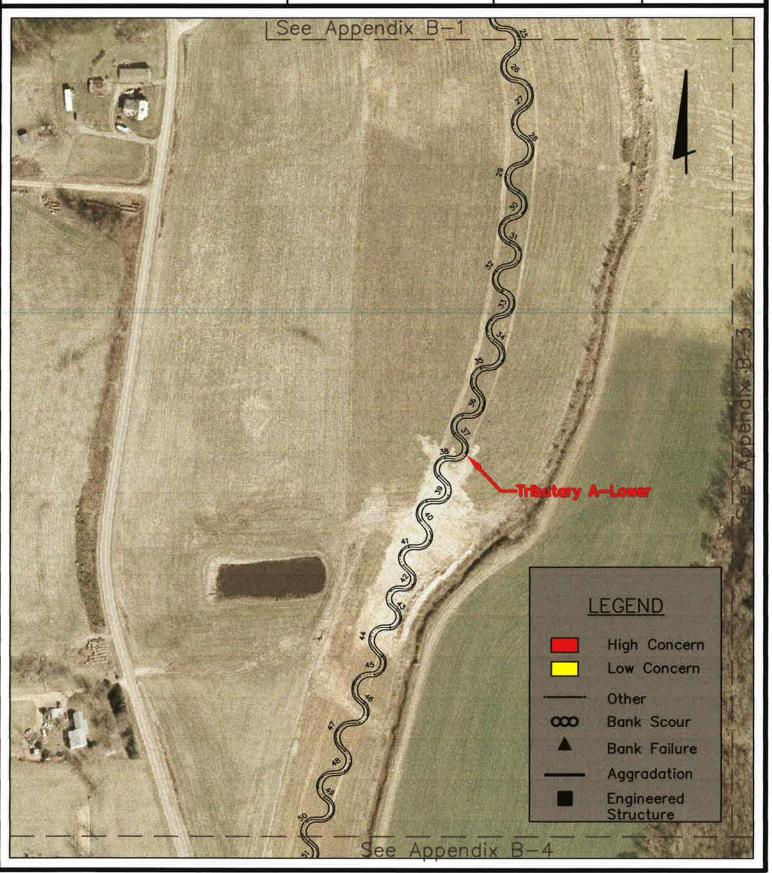
Job No. 2006-1627

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775,4500 Fax: 614.775,4800

1 C M X X V I

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES


YEAR 4 MONITORING APPENDIX B-2 TRIBUTARY A-LOWER

Date:

November, 2009

Job No.

2006-1627

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

YEAR 4 MONITORING APPENDIX B-3 TRIBUTARY C

Date:

November, 2009

Job No. 2006-1627

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775.4500 Fax: 614.775.4800

C

JCRAMER [9/30/2009 7:30:58 AM]

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

YEAR 4 MONITORING **APPENDIX B-4** TRIBUTARY A-LOWER

Date: November, 2009

Job No. 2006-1627

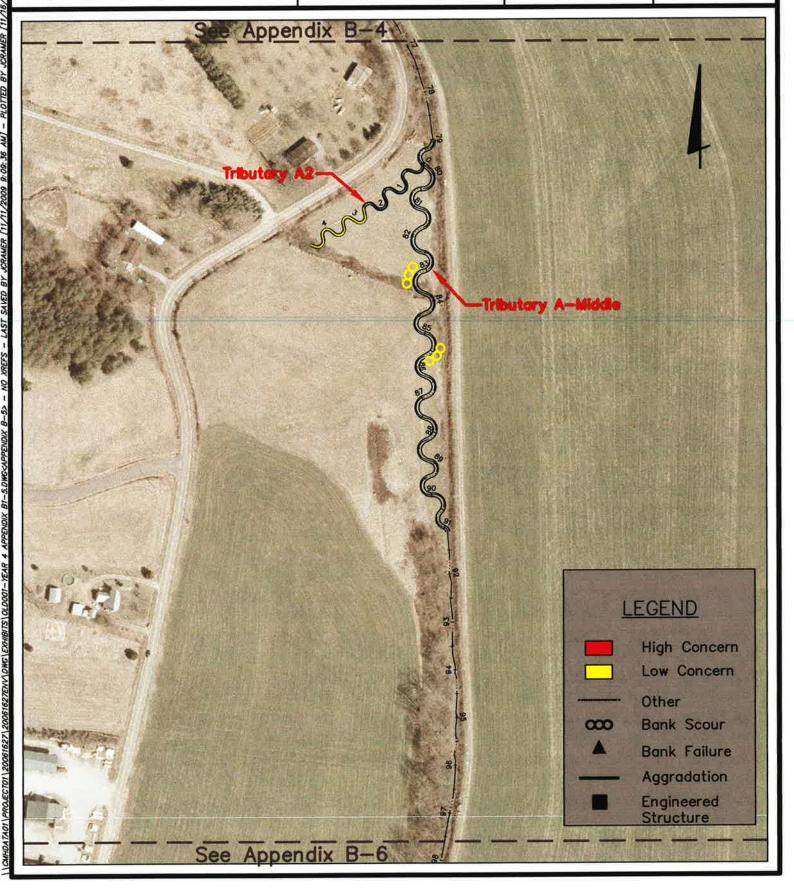
Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614.775,4500 Fax: 614,775,4800

M C M X X V

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES

YEAR 4 MONITORING


APPENDIX B-5

TRIBUTARY A-MIDDLE AND TRIBUTARY A2

Date:

November, 2009

Job No. 2006-1627

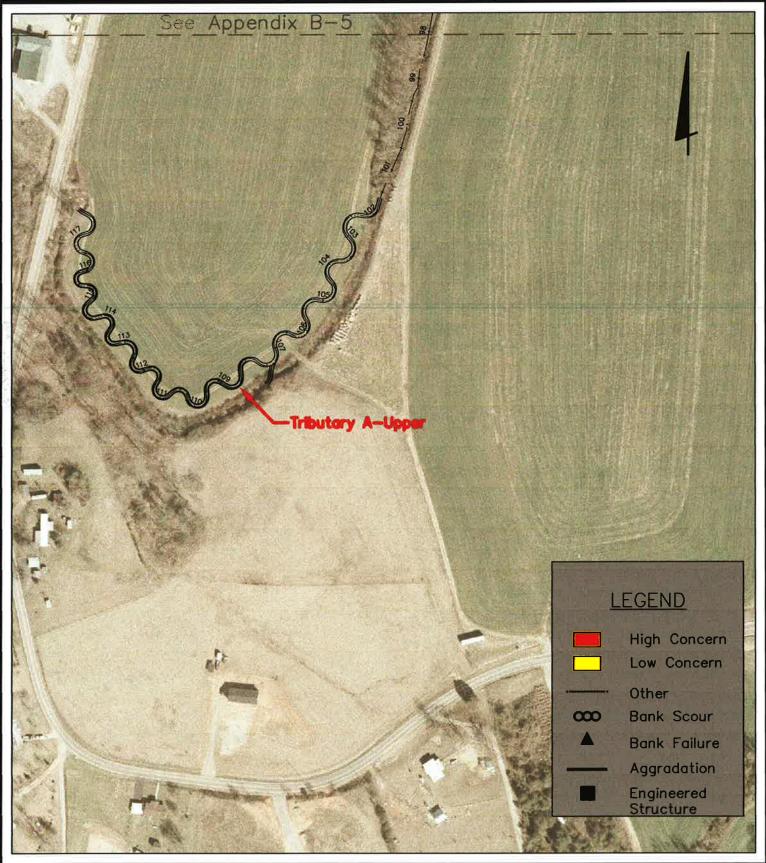
Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists 5500 New Albany Road, Columbus, OH 43054 Phone: 614,775,4500 Fax: 614,775,4800

1 C M X X V I

GATAOI/PROJECTOI/20051627/20061627ENV/DWG/EXHIBITS/OLD001—YEAR 4 APPENDIX B1—5.DWG<APPENDIX B—6>

McDOWELL COUNTY, NORTH CAROLINA

SOUTH MUDDY CREEK TRIBUTARIES


YEAR 4 MONITORING APPENDIX B-6 TRIBUTARY A-UPPER

Date: N

November, 2009

Job No. 2

2006-1627

SPA 1
Aggradation along Tributary A2 near the top of the reach. The stream channel in this area is moving toward wetland conditions.

(EMH&T, Inc. 9/16/09)

SPA 2
Bank failure along Tributary B at station 12+10; riffle has been lost. Buffer vegetation is so dense that erosion is no longer apparent; channel is also becoming vegetated and appears to be stable.

(EMH&T, Inc. 9/16/09)

SPA 3
Slumping of the left bank on Tributary A (middle) near station 84+75.

(EMH&T, Inc. 9/16/09)

SPA 4
Close-up of bank scour along the right bank of Tributary C near station 4+11.
(EMH&T, Inc. 9/16/09)

SPA 5
Close-up of a non-functional log vane along Tributary B near station 0+00. Water is flowing underneath the structure.

(EMH&T, Inc. 9/16/09)

Fixed Station 1
Overview of Tributary A (upper), facing upstream.
(EMH&T, Inc. 9/15/09)

Fixed Station 2
Overview of valley along confluence of Tributary A2 with Tributary A, facing upstream.
(EMH&T, Inc. 9/15/09)

Fixed Station 3 Overview of valley along Tributary A (lower) near station 31+50, facing downstream. (EMH&T, Inc. 9/15/09)

Fixed Station 4 Overview of valley along Tributary A (lower) near station 31+50, facing upstream. (EMH&T, Inc. 9/15/09)

Fixed Station 5
Overview of valley on Tributary A (lower) at large culvert, facing upstream.
(EMH&T, Inc. 9/15/09)

Fixed Station 6 Overview of valley on Tributary A (lower) at large culvert, facing downstream. (EMH&T, Inc. 9/15/09)

Fixed Station 7 Overview of valley along Tributary B, facing upstream. (EMH&T, Inc. 9/16/09)

Fixed Station 8
Overview of valley along Tributary B, facing downstream.
(EMH&T, Inc. 9/16/09)

Fixed Station 9 Overview of valley along Tributary C near station 6+50, facing downstream. (EMH&T, Inc. 9/16/09)

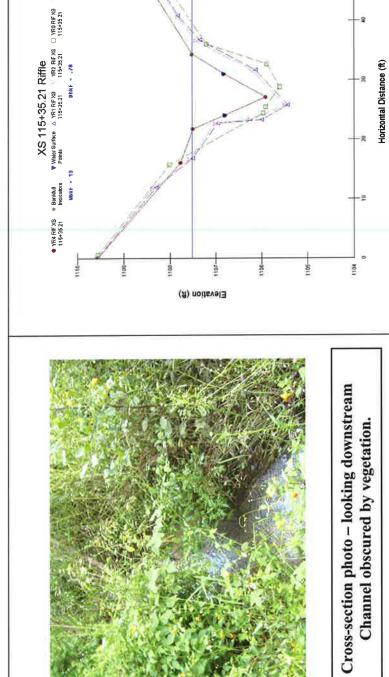
Fixed Station 10

Overview of valley along Tributary C near station 8+50, facing downstream. The photograph for Fixed Station 10 should have been taken further upstream, nearer to station 8+60.

(EMH&T, Inc. 9/16/09)

	Table B1. Visual Morphological Stability Assessment	ability Assess	ment			
	South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01	EEP Project N	o. D04006-01			
	Segment/Reach: A (upper	nper)				
		(# Stable)	1-1-1		2 2	Feature
			l otal	lotal Number / % Perform	% Perform	Perform.
Feature Category	Metric (per As-built and reference baselines)	Performing as Intended	number per As-built	number per feet in unstable in Stable As-built state Conditior	in Stable Condition	Mean or Total
A. Riffles	1. Present?	24	24	Ō	100	
	2. Armor stable (e.g. no displacement)?	24	24	0	100	
		24	24	0	100	
	4. Minimal evidence of embedding/fining?	24	24	0	100	
	5. Length appropriate?	24	24	0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	25	25	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	24	25	ļ	96	
	3. Length appropriate?	25	25	0	100	%66
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	25	25	0	100	
	2. Downstream of meander (glide/inflection) centering?	25	25	0	100	100%
D. Meanders	 Outer bend in state of limited/controlled erosion? 	25	25	0	100	
	2. Of those eroding, # w/concomitant point bar formation?	25	25	0	100	
	3. Apparent Rc within spec?	25	25	0	100	
	4. Sufficient floodplain access and relief?	25	25	0	100	100%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	10 / 0 feet	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	A/N	N/A	
	2. Height appropriate?	N/A	0	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	0	N/A	N/A	
	4. Free of piping or other structural failures?	N/A	0	N/A	N/A	N/A
G. Wads/ Boulders 1. Free of scour'	1. Free of scour?	N/A	0	N/A	N/A	
	2. Footing stable?	N/A	0	N/A	N/A	N/A

	Table B1. Visual Mornhological Stability Assessment	ability Assess	ment			
	South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01	EEP Project N	o. D04006-01			
	Segment/Reach: A (middle)	ddle)				
		(# Stable)				Feature
		Number	Total	Total Number / % Perform	% Perform	Perform.
		Performing	number per	number per feet in unstable in Stable	in Stable	Mean or
Feature Category	Metric (per As-built and reference baselines)	as Intended	As-built	state	Condition	Total
A. Riffles	1. Present?	18	18	0	100	
	2. Armor stable (e.g. no displacement)?	18	18	0	100	
	3. Facet grade appears stable?	18	18	0	100	
	4. Minimal evidence of embedding/fining?	18	18	0	100	
	5. Length appropriate?	18	18	0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	19	19	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	19	19	0	100	
	3. Length appropriate?	19	19	0	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	19	19	0	100	
	2. Downstream of meander (glide/inflection) centering?	19	19	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	18	19	1	95	
	2. Of those eroding, # w/concomitant point bar formation?	18	19	1	95	
	3. Apparent Rc within spec?	19	19	0	100	
	4. Sufficient floodplain access and relief?	19	19	0	100	%86
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	0/ 0 feet	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	N/A	N/A	
	2. Height appropriate?	N/A	0	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	0	N/A	N/A	
	4. Free of piping or other structural failures?	N/A	0	N/A	N/A	N/A
G. Wads/ Boulders 1. Free of scour?	1. Free of scour?	N/A	0	N/A	N/A	
	2. Footing stable?	N/A	0	N/A	N/A	N/A

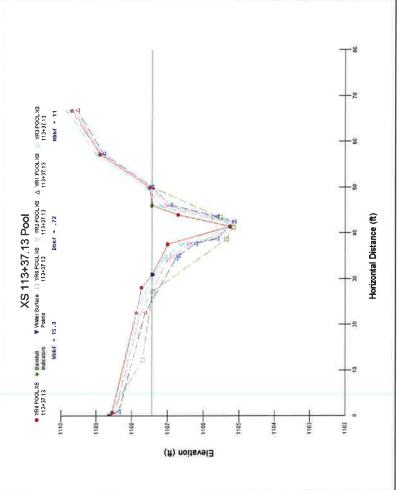

	Table B1. Visual Morphological Stability Assessment	ability Assess	ment			
	South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01	EEP Project N	o. D04006-01			
	Segment/Reach: A (lower)	wer)				
		(# Stable)				Feature
			Total	Total Number /	% Perform	Perform.
		_	number per	number per feet in unstable in Stable	in Stable	Mean or
Feature Category	Metric (per As-built and reference baselines)	as Intended	As-built	state	Condition	Total
A. Riffles	1. Present?	66	66	0	100	
	2. Armor stable (e.g. no displacement)?	68	93	0	100	
	3. Facet grade appears stable?	93	93	0	100	
	4. Minimal evidence of embedding/fining?	93	93	0	100	
	5. Length appropriate?	93	93	0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	98	96	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	95	95	0	100	
	3. Length appropriate?	95	95	0	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	96	96	0	100	
	2. Downstream of meander (glide/inflection) centering?	95	95	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	96	96	0	100	
	2. Of those eroding, # w/concomitant point bar formation?	95	95	0	100	
	3. Apparent Rc within spec?	95	96	0	100	
	4. Sufficient floodplain access and relief?	95	96	0	100	100%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	199 0 /0	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	N/A	N/A	
	2. Height appropriate?	N/A	0	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	0	N/A		
	4. Free of piping or other structural failures?	N/A	0	N/A	N/A	N/A
G. Wads/ Boulders 1. Free of scour	1. Free of scour?	N/A	0			
	2. Footing stable?	N/A	0	N/A	N/A	N/A

Feature Category Metric (per As-built and reference baselines) A. Riffles 2. Armor stable (e.g. no displacement)? 3. Facet grade appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 5. Length appropriate? 6. Sufficiently deep (Max Pool D:Mean Bkf>1.6?) 7. Sufficiently deep (Max Pool D:Mean Bkf>1.6?) 8. Longth appropriate? 9. Sufficiently deep (Max Pool D:Mean Bkf>1.6?) 10. Downstream of meander bend (run/inflection) centering? 11. Outer bend in state of limited/controlled erosion? 12. Of those eroding, # w/concomitant point bar formation? 13. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 5. Channel bed aggradation areas (bar formation) 6. Channel bed degradation - areas of increasing downcutting or headcutting? 7. Height appropriate? 8. Height appropriate?		South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01 Segment/Reach: A2	EEP Project N	ment Io. D04006-0]	_		
			(# Stable) Number	Total	Total Number /	% Perform	Feature Perform.
		Metric (per As-built and reference baselines)	Performing number as Intended As-built	number per As-built	number per feet in unstable in Stable As-built state Condition	_	Mean or Total
eg ders seneral	Riffles	1. Present?	7	7	0	100	
eg ders Seneral		2. Armor stable (e.g. no displacement)?	7	7	0	100	
leg ders Seneral		Facet grade appears stable?	7	7	0	100	
eg ders Seneral		4. Minimal evidence of embedding/fining?	8	7	4	43	
eg ders seneral		5. Length appropriate?	<i>L</i>	7	0	100	%68
rai		 Present? (e.g. not subject to severe aggrad. or migrat.?) 	9	7	2	1.2	
ıaı		Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	9	7	2	71	
rai		3. Length appropriate?	5	7	2	71	71%
a	Thalweg	 Upstream of meander bend (run/inflection) centering? 	11	11	0	100	
ıaı		Downstream of meander (glide/inflection) centering?	11	11	0	100	100%
	Meanders	 Outer bend in state of limited/controlled erosion? 	11	11	0		
		Of those eroding, # w/concomitant point bar formation?	11	111	0	100	
		Apparent Rc within spec?	11	11	0	100	
		 Sufficient floodplain access and relief? 	11	11	0	100	100%
		 General channel bed aggradation areas (bar formation) 	N/A	N/A	0/ 0 feet	100%	
		2. Channel bed degradation - areas of increasing downcutting		4,14	1010		
		or neadcutiing?	N/A	N/A	U/ U reer	_	%00L
2. Height appropriate?	Vanes	 Free of back or arm scour? 	N/A	0	A/N		
		2. Height appropriate?	N/A	0	N/A		
3. Angle and geometry appear appropriate		Angle and geometry appear appropriate?	N/A	0	N/A		
4. Free of piping or other structural failures		 Free of piping or other structural failures? 	N/A	0	N/A	N/A	N/A
G. Wads/ Boulders 1. Free of scour?	Wads/ Boulders	1. Free of scour?	N/A	0	N/A	A/N	
2. Footing stable?		2. Footing stable?	N/A	0	N/A	N/A	N/A

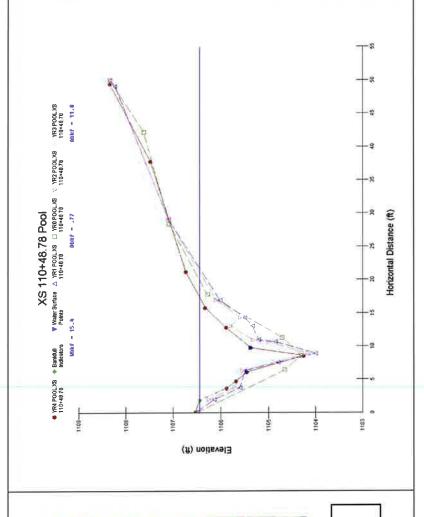
	Table B1. Visual Morphological Stability Assessment	ability Assess	ment			
	South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01	EEP Project N	lo. D04006-01	_		
	Segment/Reach; B	-				
		(6				Feature
		Number	Total	Total Number /	% Perform	Perform.
, in the contract of the contr		Performing	number per	Performing number per feet in unstable in Stable	in Stable	Mean or
reature Category	Metric (per As-built and reference baselines)	as Intended As-built	- 1	state	Condition	lotal
A. Riffles	1. Present?	22	23		96	
	2. Armor stable (e.g. no displacement)?	22	23	L	96	
	3. Facet grade appears stable?	22	23	1	96	
	4. Minimal evidence of embedding/fining?	18	23	5		
	5. Length appropriate?	22	23	1	96	95%
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	23	23	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf≻1.6?)	21	23	2	91	
	3. Length appropriate?	23	23	0	100	%26
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	98	36	0	100	
	2. Downstream of meander (glide/inflection) centering?	36	36	0	100	100%
D. Meanders	 Outer bend in state of limited/controlled erosion? 	34	36	2	94	
	2. Of those eroding, # w/concomitant point bar formation?	36	36	0	100	
	3. Apparent Rc within spec?	36	36	0	100	
	4. Sufficient floodplain access and relief?	36	36	0	100	%66
E. Bed General	 General channel bed aggradation areas (bar formation) 	N/A	N/A	0/ 0 feet	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	N/A	N/A	
	2. Height appropriate?	N/A	0	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	0	N/A	N/A	
	4. Free of piping or other structural failures?	N/A	0	A/A	N/A	N/A
G. Wads/ Boulders 1. Free of scour?	1. Free of scour?	N/A	0	N/A	N/A	
	2. Footing stable?	N/A	0	N/A	N/A	ŇÄ
H. Log Sills	1. Maintaining grade control?	13	14	,	66	
	2. Minimal evidence of sedimentation in adjacent pool?	14	14	0	100	97%

			IIIVIA			
	South Muddy Creek Tributaries Restoration / EEP Project No. D04006-01	EEP Project N	lo. D04006-01	_		
	Segment/Reach: C					
		(# Stable)				Feature
		Number	Total	Total Number /	% Perform	Perform.
Feature Category	Matric (nor As-built and reference basedines)	Performing	number per	number per feet in unstable in Stable	in Stable	Mean or
T	Guic (per As-built and reference baselines)	as intended As-Dulli	- 1	state	Conditio	l otal
A. KIIIIES	I. Present?	33	33	.0	100	
2.	Armor stable (e.g. no displacement)?	33	33	0	100	
3.	3. Facet grade appears stable?	33	33	0	100	
4.	4. Minimal evidence of embedding/fining?	33	33	0	100	
5.	5. Length appropriate?	33	33	0	100	100%
B. Pools 11.	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	34	34	0	100	
2.	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	34	34	0		
.8.	Length appropriate?	34	34	0	100	100%
C. Thalweg 11.	1. Upstream of meander bend (run/inflection) centering?	19	19	0	100	
2.	Downstream of meander (glide/inflection) centering?	19	19	0	100	100%
D. Meanders 1.	1. Outer bend in state of limited/controlled erosion?	31	34	3	91	
2.	Of those eroding, # w/concomitant point bar formation?	34	34	0	100	
33	3. Apparent Rc within spec?	34	34	0		
4.	Sufficient floodplain access and relief?	32	34	2		%96
E. Bed General	 General channel bed aggradation areas (bar formation) 	N/A	N/A	0/ 0 feet	100	
2	ď					
ō	or headcutting?	N/A	N/A	0/ 0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	N/A	N/A	
2.	Height appropriate?	A/A	0	A/N	N/A	
3.	Angle and geometry appear appropriate?	N/A	0	A/N	A/A	
4.	4. Free of piping or other structural failures?	N/A	0	N/A	3301	NA
G. Wads/ Boulders 1. Free of scour?	Free of scour?	N/A	0	A/N	N/A	
2.	2. Footing stable?	N/A	0	N/A	N/A	N/A

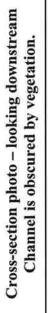
4			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	10.08 ft²			4-YEAR
Bankfull Width	12.99 ft	TASK	Cross-Section	
Mean Depth	0.78 ft	REACH	A Upper	
Maximum Depth	1.61 ft	DATE	9/29/09	
Width/Depth Ratio	16.65			
Entrenchment Ratio	4.03	,		
Classification	C		SECTION:	17.55-51
		Ecosystem	FEATURE:	Riffle



Summary Data			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	$11.00 \mathrm{ft}^2$			4-YEAR
Bankfull Width	15.28 ft	TASK	Cross-Section	
Mean Depth	0.72 ft	REACH	A Upper	
Maximum Depth	2.19 ft	DATE	12/10/00	
Width/Depth Ratio	21.22	7		
Entrenchment Ratio	4.30			
			CROSS SECTION:	113+37.13
		Ecosystem	FEATURE:	Pool

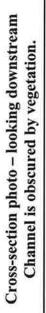

PROJECT Cross-Section A Upper 9/29/09 REACH TASK DATE 11.78 ft² 15.38 ft 0.77 ft 2.19 ft 19.97 3.21 Entrenchment Ratio Width/Depth Ratio Maximum Depth Summary Data Bankfull Width Bankfull Area Mean Depth

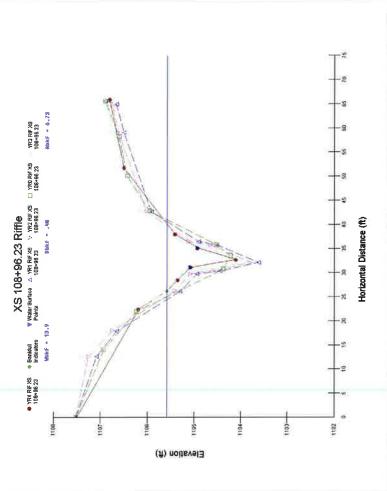
South Muddy


D04006-1 4-YEAR 110+48.78

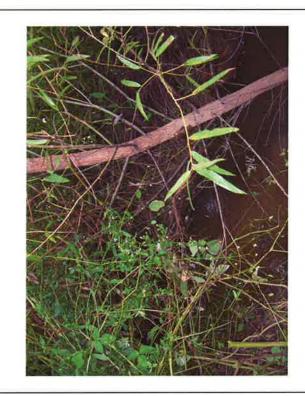
CROSS SECTION: Pool

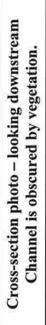
FEATURE:

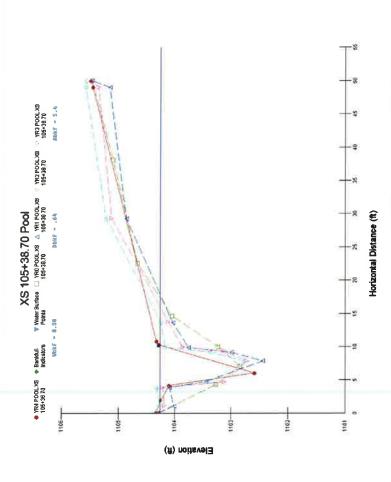




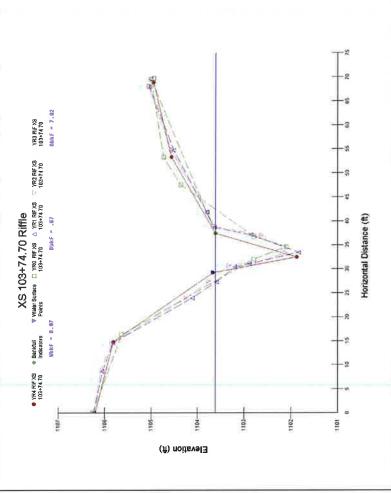
South Muddy 108+96.23 D04006-1 4-YEAR Riffle PROJECT **Cross-Section** CROSS SECTION: FEATURE: A Upper 9/29/09 REACH TASK DATE 6.73 ft² 13.93 ft 0.48 ft 1.48 ft 29.02 4.19 C Entrenchment Ratio Width/Depth Ratio Maximum Depth Summary Data Bankfull Width Bankfull Area Classification Mean Depth



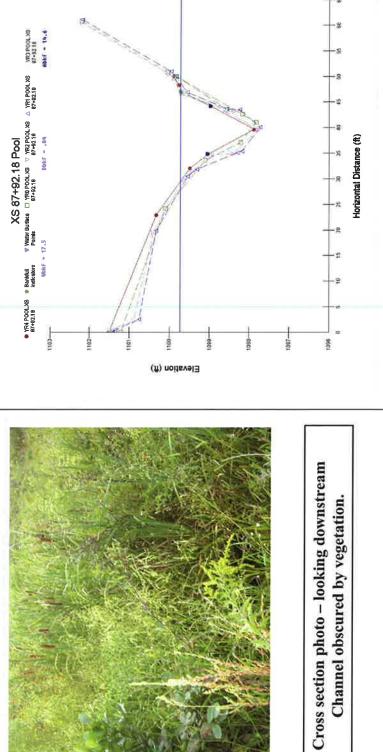




Summary Data			PROJECT	PROJECT South Muddy
Summary Para				D04006-1
Bankfull Area	5.40 ft ²			4-YEAR
Bankfull Width	8.38 ft	TASK	Cross-Section	
Mean Depth	0.64 ft	REACH	A Upper	
Maximum Depth	1.67 ft	DATE	12/10/09	
Width/Depth Ratio	13.09			
Entrenchment Ratio	5.96	,		
	,	V	CROSS SECTION:	105+38.70
		Ecosystem	FEATURE:	Pool



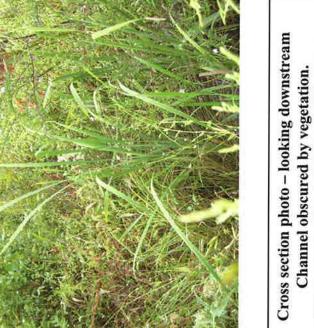
			TOTI Odd	Courte Mindal
Summary Data			PROJECT	PROJECT South Midday
				D04006-1
Bankfull Area	$7.02~\mathrm{ft}^2$			4-YEAR
Bankfull Width	8.07 ft	TASK	Cross-Section	
Mean Depth	0.87 ft	REACH	A Upper	
Maximum Depth	1.74 ft	DATE	9/29/0	
Width/Depth Ratio	9.28			
Entrenchment Ratio	6.32	,		
Classification	丑	Y	CROSS SECTION:	103+74.70
		Ecosystem	FEATURE:	Riffle

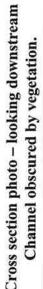


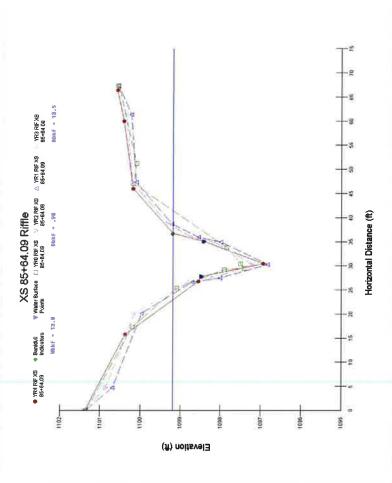
South Muddy D04006-1 87+92.18 4-YEAR PROJECT **Cross-Section** CROSS SECTION: A Middle 9/29/09 REACH TASK DATE 14.63 ft² 17.48 ft 0.84 ft 1.85 ft 20.81 2.86 Entrenchment Ratio Width/Depth Ratio Maximum Depth Summary Data Bankfull Width Bankfull Area Mean Depth

Pool

FEATURE:

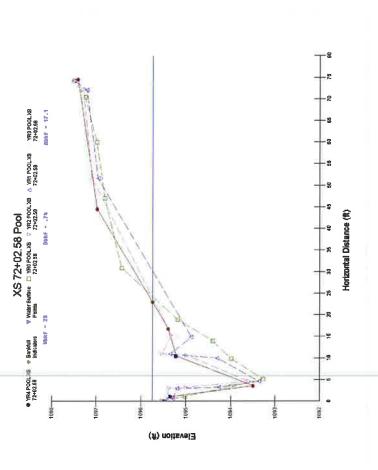

Channel obscured by vegetation.


South Muddy D04006-1 85+64.09 4-YEAR PROJECT **Cross-Section** CROSS SECTION: A Middle 9/29/09 REACH TASK DATE 13.54 ft² 13.76 ft 0.98 ft 2.26 ft 14.04 4.83 Entrenchment Ratio Width/Depth Ratio Maximum Depth Summary Data Bankfull Width Bankfull Area Classification Mean Depth


Riffle

FEATURE:



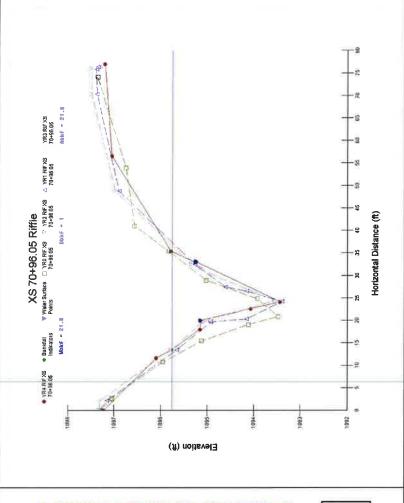


Summery Data			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	17.05 ft²			4-YEAR
Bankfull Width	23.0 ft	TASK	Cross-Section	
Mean Depth	0.74 ft	REACH	A Lower	
Maximum Depth	2.25 ft	DATE	0/00/00	
Width/Depth Ratio	31.08		201270	
Entrenchment Ratio	3.24	3		
		V	SECTION:	72+02.58
		Ecosystem	FEATURE:	Pool
		The state of the s		

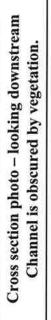
REACH TASK DATE 21.78 ft² 21.78 ft 1.0 ft 2.32 ft 21.78 3.53 C Entrenchment Ratio Width/Depth Ratio Maximum Depth Summary Data Bankfull Width Bankfull Area Classification Mean Depth

South Muddy

PROJECT

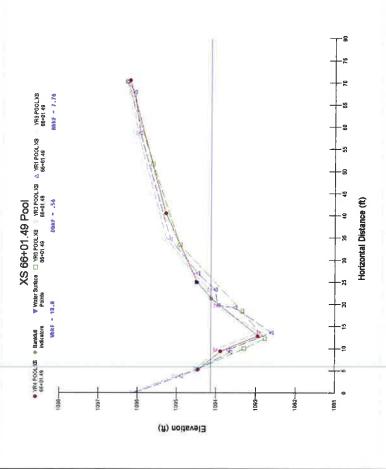

D04006-1 4-YEAR

Cross-Section


A Lower 9/29/09 70+96.05

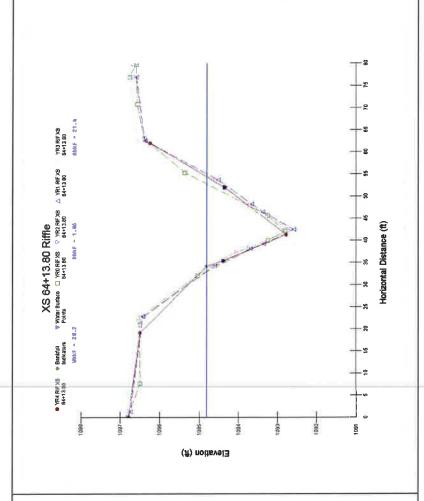
CROSS SECTION: Riffle

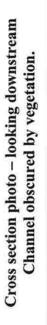
FEATURE:


South Muddy D04006-1 66+01.49 4-YEAR Pool PROJECT **Cross-Section** CROSS SECTION: FEATURE: A Lower 9/29/09 REACH TASK DATE 7.76 ft² 13.77 ft 0.56 ft 1.19 ft 24.59 2.66 Entrenchment Ratio Width/Depth Ratio

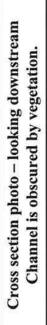
Mean Depth Maximum Depth

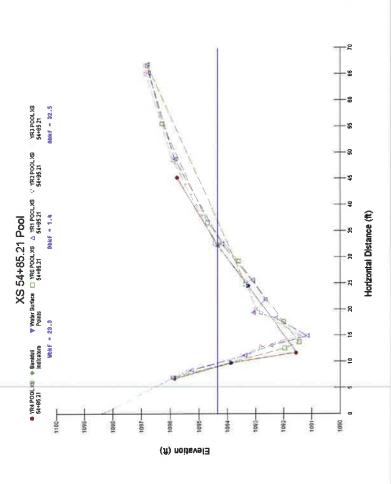
Bankfull Width Bankfull Area



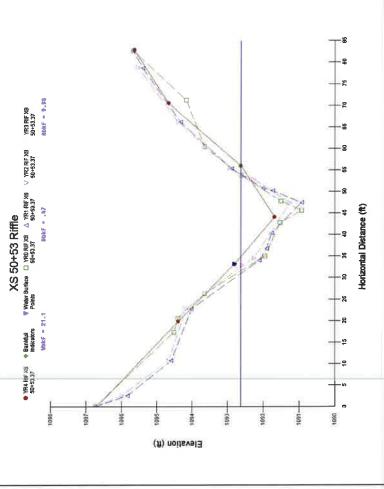


Summary DataPROJECTSouth MuddyBankfull Area21.44 ft²4-YEARBankfull Width20.23 ft4-YEARMean Depth1.06 ftA LowerMaximum Depth2.04 ftA LowerWidth/Depth Ratio19.08A LowerEntrenchment Ratio3.07CROSSClassificationCEATURE:Riffle					
21.44 ft ² 20.23 ft 1.06 ft 2.04 ft 19.08 3.07 C C Example 19.08 C C FEOSYSTEM FEATURE: FEATURE:	6			PROJECT	South Muddy
21.44 ft² 20.23 ft 1.06 ft 2.04 ft 19.08 3.07 C C C C C C C C C C C C C C C C C C C	š				D04006-1
20.23 ft		21.44 ft²			4-YEAR
1.06 ft 2.04 ft 19.08 3.07 C C Expossible DATE 9/29/09 SECTION: FEATURE:	_	20.23 ft	TASK	Cross-Section	
2.04 ft 19.08 3.07 C C C C C C C C C C C C C C C C C C C		1.06 ft	REACH	A Lower	
3.07 C C Enhancement Feature:	th	2.04 ft	DATE	60/62/6	
3.07 C C Exposystem FEATURE:	atio	19.08			
C CROSS SECTION: Excosystem Feature:	Latio	3.07			
		C	Y	CROSS SECTION:	64+13.80
THISTORY			Ecosystem	FEATURE:	Riffle
			Lamanacantan		



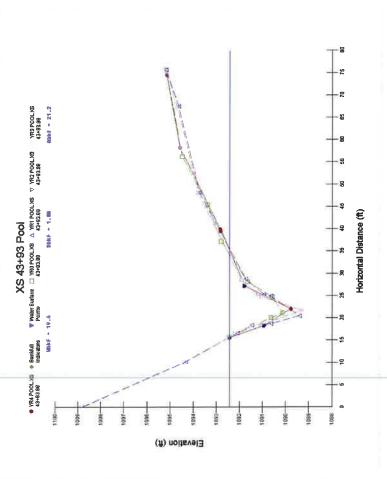


, L. C			PROJECT	PROJECT South Muddy	
Summary Data				D04006-1	
Bankfull Area	32.51 ft ²			4-YEAR	
Bankfull Width	23.27 ft	TASK	Cross-Section		
Mean Depth	1.4 ft	REACH	A Lower		_
Maximum Depth	2.8 ft	DATE	60/62/6		
Width/Depth Ratio	16.62				
Entrenchment Ratio	1.94	1			_
			CROSS SECTION:	54+85.21	
		Ecosystem	FEATURE:	Pool	



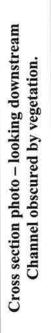
Cummary Data			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	9.93 ft ²			4-YEAR
Bankfull Width	21.13 ft	TASK	Cross-Section	
Mean Depth	0.47 ft	REACH	A Lower	
Maximum Depth	0.94 ft	DATE	0/20/00	
Width/Depth Ratio	44.96			
Entrenchment Ratio	1.7	,		
Classification	В	V	CROSS SECTION:	50+53.37
		Finlancement	FEATURE:	Riffle

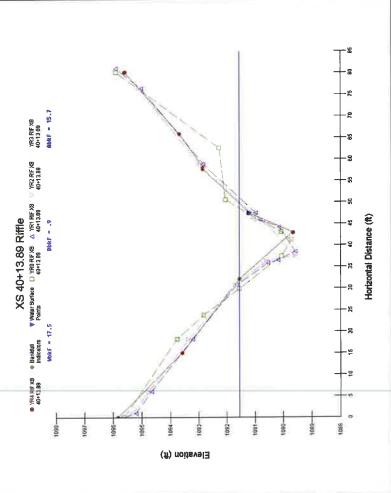
Cross section photo - looking downstream Channel obscured by vegetation.


South Muddy D04006-1 43+93.88 4-YEAR **PROJECT Cross-Section** CROSS SECTION: A Lower 9/29/09 REACH TASK DATE 21.15 ft² 19.64 ft 1.08 ft 2.67 ft 18.19 2.92 Entrenchment Ratio Width/Depth Ratio Mean Depth Maximum Depth Summary Data Bankfull Width Bankfull Area

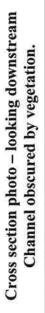
Pool

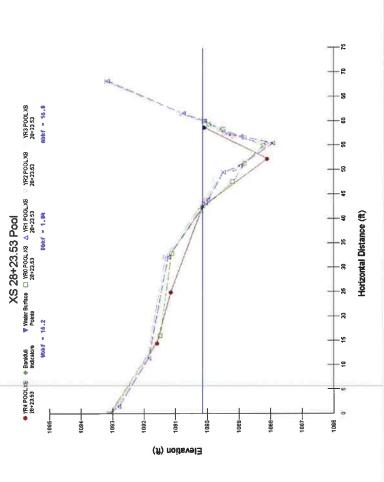
FEATURE:



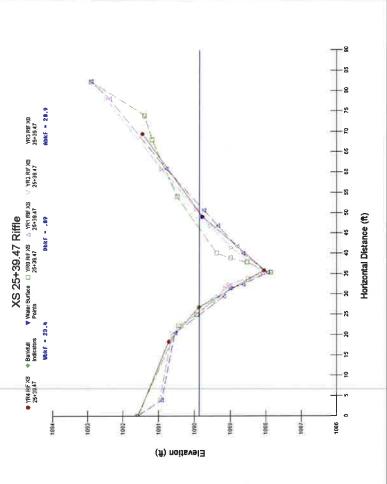


					19
4			PROJECT	PROJECT South Muddy	
Summary Data				D04006-1	
Bankfull Area	15.69 ft²			4-YEAR	
Bankfull Width	17.52 ft	TASK	Cross-Section		
Mean Depth	0.9 ft	REACH	A Lower		
Maximum Depth	1.9 ft	DATE	9/29/09		
Width/Depth Ratio	19.47				
Entrenchment Ratio	2.72	,	0	40.42	
Classification	υ υ	V	SECTION:	40415.08	
		Ecosystem	FEATURE:	Riffle	





4			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	16.8 ft ²			4-YEAR
Sankfull Width	16.17 ft	TASK	Cross-Section	
Mean Depth	1.04ft	REACH	A Lower	
Aaximum Depth	2.05 ft	DATE	60/62/6	
Vidth/Depth Ratio	15.55			
Intrenchment Ratio	3.1	}	1	
			CROSS SECTION:	28+23.53
		Ecosystem	FEATURE:	Pool



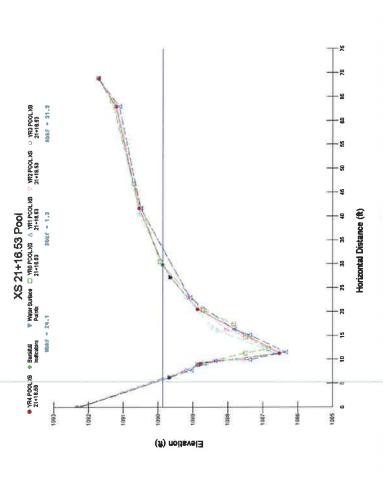
Cummony Doto			PROJECT	PROJECT South Muddy	_
Summary Data				D04006-1	
Bankfull Area	20.93 ft ²			4-YEAR	
Bankfull Width	23.39 ft	TASK	Cross-Section		
Mean Depth	0.89 ft	REACH	A Lower		
Maximum Depth	1.82 ft	DATE	60/62/6		
Width/Depth Ratio	26.28	!			
Entrenchment Ratio	2.97	,			
Classification	Ü		CROSS SECTION:	25+39.47	
		Engrystem	FEATURE:	Riffle	

South Muddy D04006-1 22+31.26 4-YEAR Riffle **PROJECT Cross-Section** CROSS SECTION: FEATURE: A Lower 9/29/09 REACH TASK DATE 18.06 ft² 21.26 ft 0.85 ft 1.81 ft 25.01 2.8 C Entrenchment Ratio Width/Depth Ratio

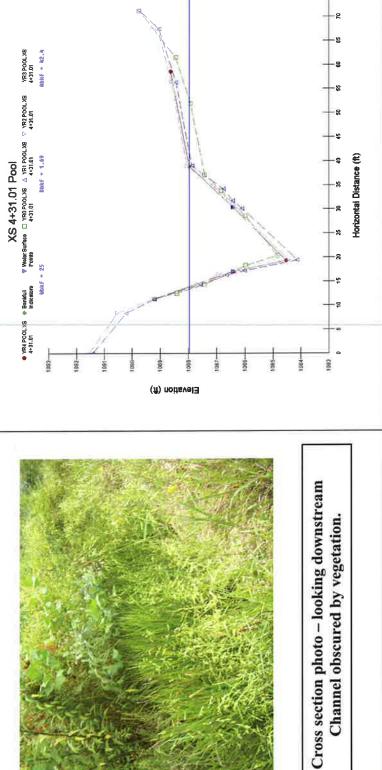
Mean Depth Maximum Depth

Classification

Bankfull Width Bankfull Area



31.25 ft ² 24.13 ft 1.30 ft 3.35 ft tio 18.56 atio 2.85 TASK Cross-Section REACH A Lower DATE 12/10/09 SECTION: FEATURE:	Summony Doto			PROJECT	PROJECT South Muddy
31.25 ft ² 24.13 ft 1.30 ft 3.35 ft 0 2.85 DATE 12/10/09 SECTION: FEATURE:	Summary Data				D04006-1
24.13 ft	Bankfull Area	31.25 ft ²			4-YEAR
1.30 ft A Lower 3.35 ft DATE 12/10/09 18.56 0 2.85 CROSS SECTION: FEATURE:	Bankfull Width	24.13 ft	TASK	Cross-Section	
3.35 ft 12/10/09 18.56 0 2.85 CROSS SECTION: FEATURE:	Mean Depth	1.30 ft	REACH	A Lower	
o 2.85 CROSS SECTION: FEOSYSTEM FEATURE:	Maximum Depth	3.35 ft	DATE	12/10/09	
2.85 CROSS SECTION: FEATURE:	Width/Depth Ratio	18.56			
	Entrenchment Ratio	2.85	.)	1	
			M	CROSS SECTION:	21+16.53
			Ecosystem	FEATURE:	Pool



			PROJECT	PROJECT South Muddy	
Summary Data				D04006-1	
Bankfull Area	$42.39 \mathrm{ft}^2$			4-YEAR	
Bankfull Width	25.04 ft	TASK	Cross-Section		
Mean Depth	1.69 ft	REACH	A Lower		
Maximum Depth	3.44 ft	DATE	6/53/06		
Width/Depth Ratio	14.82				
Entrenchment Ratio	2.34	1			
		V	CROSS SECTION:	4+31	

Pool

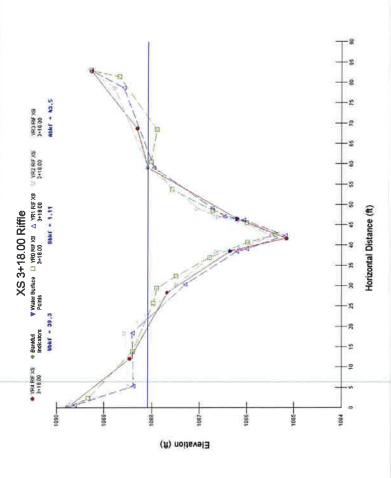
FEATURE:

Channel obscured by vegetation.

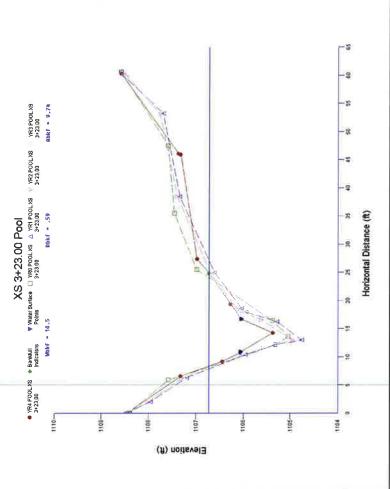
43.45 ft² 39.25 ft 1.11 ft 2.94 ft 35.36 2.11 B Entrenchment Ratio Width/Depth Ratio Maximum Depth Bankfull Width Bankfull Area Mean Depth

Classification

South Muddy D04006-1 4-YEAR **PROJECT Cross-Section** A Lower 9/29/09 REACH TASK DATE


3+18.00 Riffle CROSS SECTION: FEATURE:

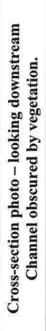
Cross section photo - looking downstream Channel obscured by vegetation.

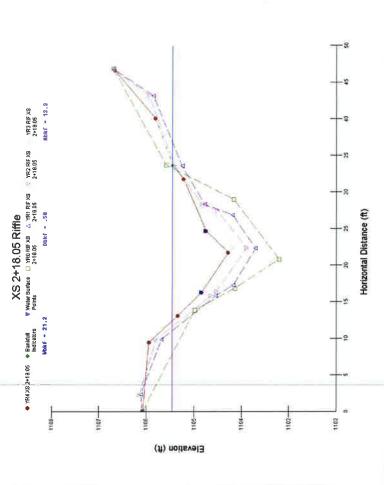


Summary Data			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	9.74 ft²			4-YEAR
Bankfull Width	16.54 ft	TASK	Cross-Section	
Mean Depth	0.59 ft	REACH	4 2	
Maximum Depth	1.36 ft	DATE	90/56/6	
Width/Depth Ratio	28.03	<u> </u>		
Entrenchment Ratio	3.17			
		V	CROSS SECTION:	3+23
		Ecosystem	FEATURE:	Pool

Channel completely obscured by vegetation. Cross-section photo - looking downstream

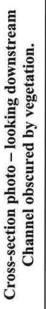
South Muddy D04006-1 4-YEAR 2+18 Riffle **PROJECT Cross-Section** CROSS SECTION: FEATURE: 9/29/09 8 REACH TASK DATE 12.29 ft² 21.25 ft 0.58 ft 1.17 ft 36.64 2.18 C Entrenchment Ratio Width/Depth Ratio

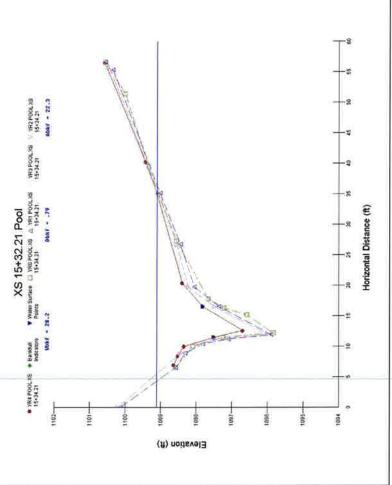

Maximum Depth


Mean Depth

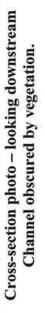
Classification

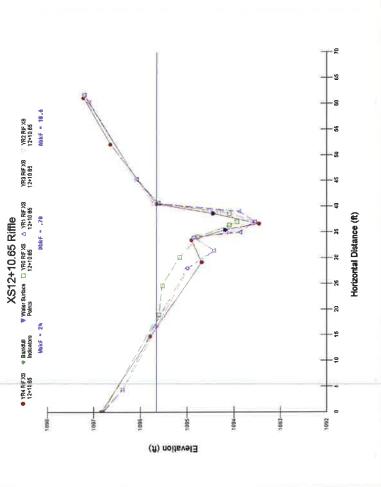
Bankfull Width Bankfull Area





Summary Data			PROJECT	PROJECT South Muddy	
Summary Data				D04006-1	
Bankfull Area	22.35 ft ²			4-YEAR	
Bankfull Width	28.18 ft	TASK	Cross-Section		
Mean Depth	0.79 ft	REACH	ω.		
Maximum Depth	2.42 ft	DATE	9/29/09		
Width/Depth Ratio	35.67				
Entrenchment Ratio	2.00				
			CROSS SECTION:	15+34.21	
		Ecosystem	FEATURE:	Pool	



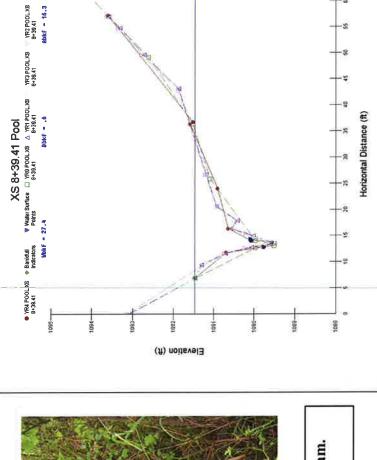


Cumment Date			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	$18.63 \mathrm{ft}^2$			4-YEAR
Bankfull Width	24.01 ft	TASK	Cross-Section	
Mean Depth	0.78 ft	REACH	ω	
Maximum Depth	2.19 ft	DATE	60/62/6	
Width/Depth Ratio	30.78			
Entrenchment Ratio	2.55	,		
Classification	C		SECTION:	12+10.65
		Emancement	FEATURE:	Riffle

16.33 ft²
27.4 ft
0.6 ft
1.92 ft
45.67
2.09 Entrenchment Ratio Width/Depth Ratio Maximum Depth Bankfull Width Bankfull Area Mean Depth

South Muddy D04006-1 4-YEAR PROJECT Cross-Section 9/29/09 REACH TASK DATE

8+39.41 Pool CROSS SECTION:



FEATURE:

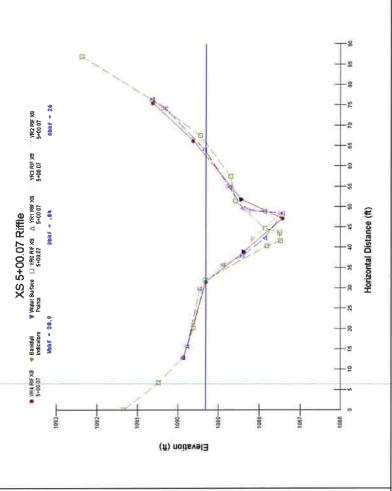
Cross-section photo - looking downstream. Channel obscured by vegetation.

South Muddy D04006-1 4-YEAR 5+00.07 Riffle PROJECT **Cross-Section** CROSS SECTION: FEATURE: 9/29/09 REACH TASK DATE 25.98 ft² 30.94 ft 0.84 ft 1.87 ft 36.83 2.44 C

Entrenchment Ratio

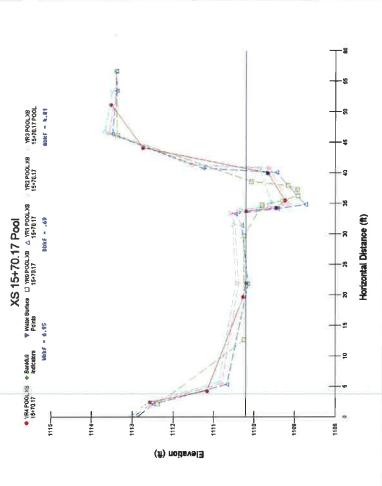
Classification

Maximum Depth Width/Depth Ratio

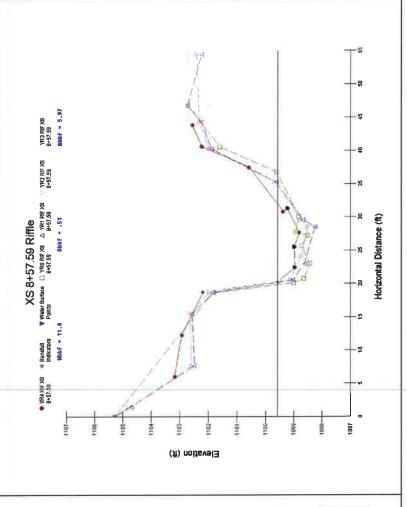

Summary Data

Bankfull Area Bankfull Width

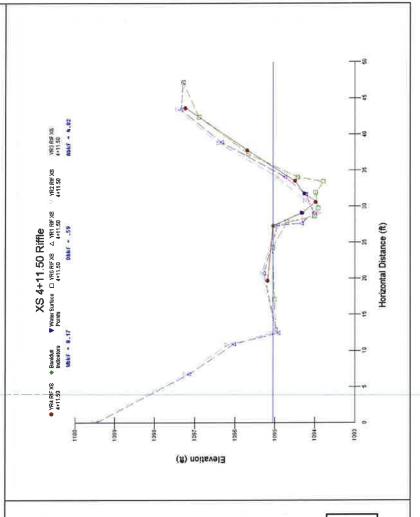
Mean Depth

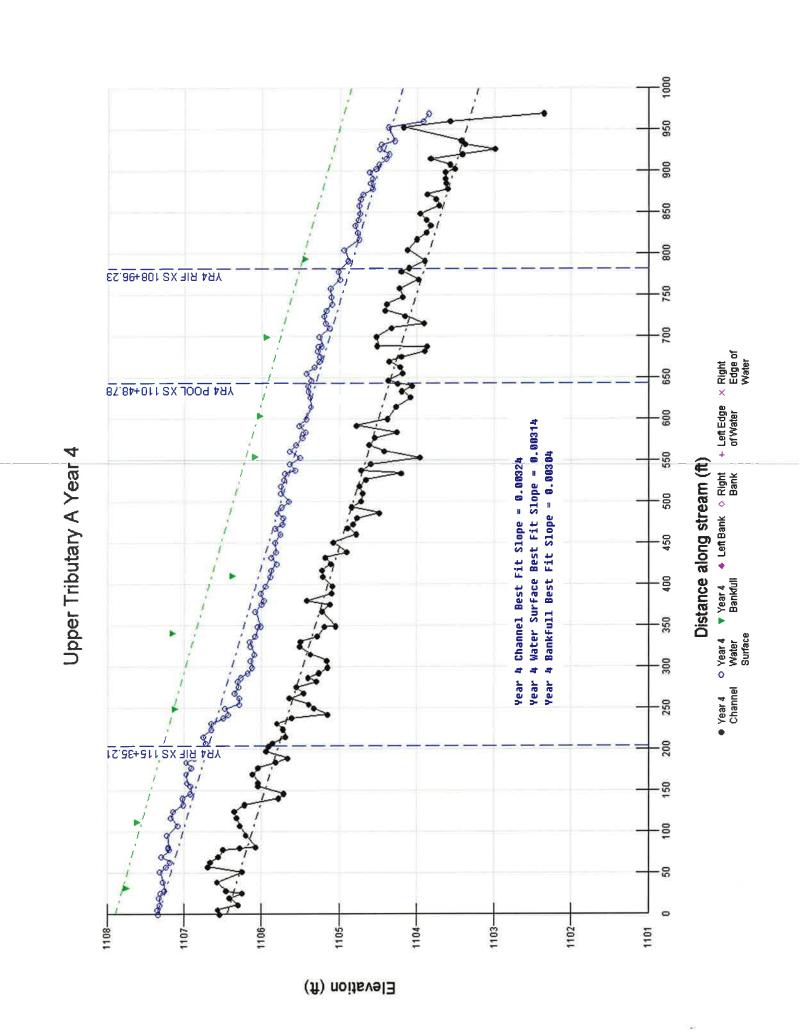


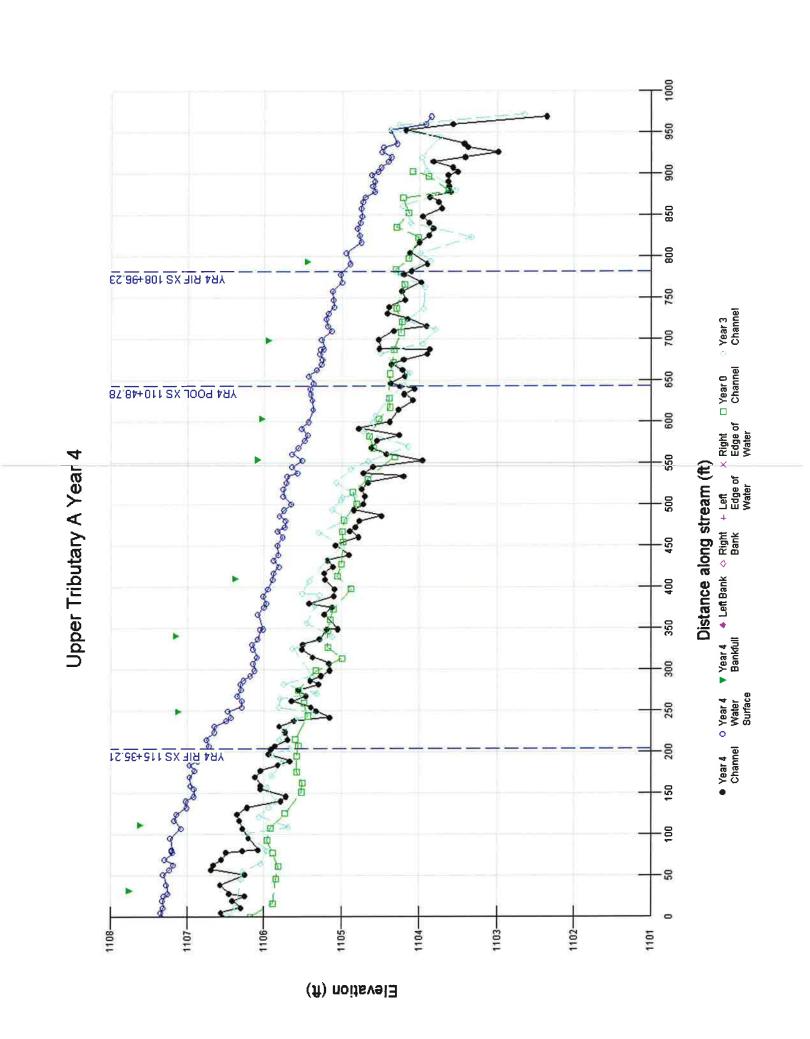
1			PROJECT	PROJECT South Muddy
Summary Data				DOADOR-1
Bankfull Area	$4.81 \mathrm{ft}^2$			4-YEAR
Bankfull Width	6.95 ft	TASK	Cross-Section	
Mean Depth	0.69 ft	REACH	ပ	
Maximum Depth	0.96 ft	DATE	00/06/0	
Width/Depth Ratio	10.07			
Entrenchment Ratio	5.42	,		
			CROSS SECTION:	15+70.17
		Ecosystem	FEATURE:	Pool

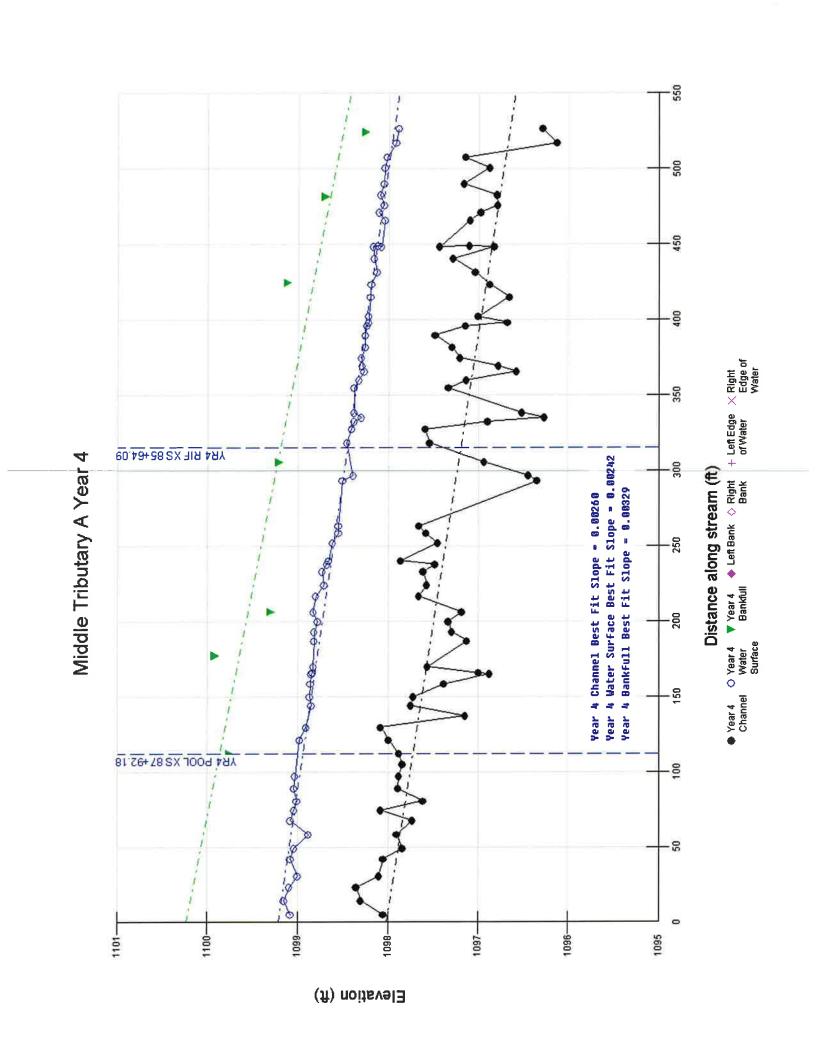


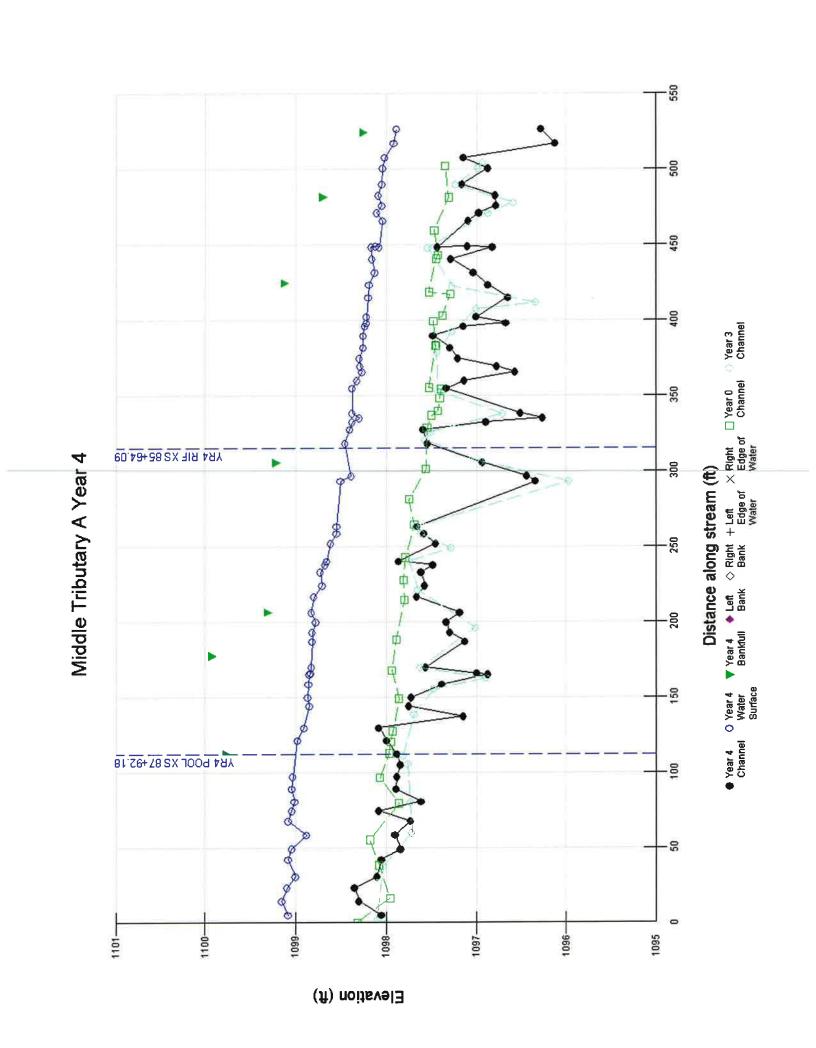
Carmonacour, Docto			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	5.97 ft ²			4-YEAR
Bankfull Width	11.63 ft	TASK	Cross-Section	
Mean Depth	0.51 ft	REACH	ပ	
Maximum Depth	0.76 ft	DATE	60/62/6	
Width/Depth Ratio	22.8			
Entrenchment Ratio	1.4	}		;
Classification	В	V	CROSS SECTION:	8+57.59
		Enhancement	FEATURE:	Riffle

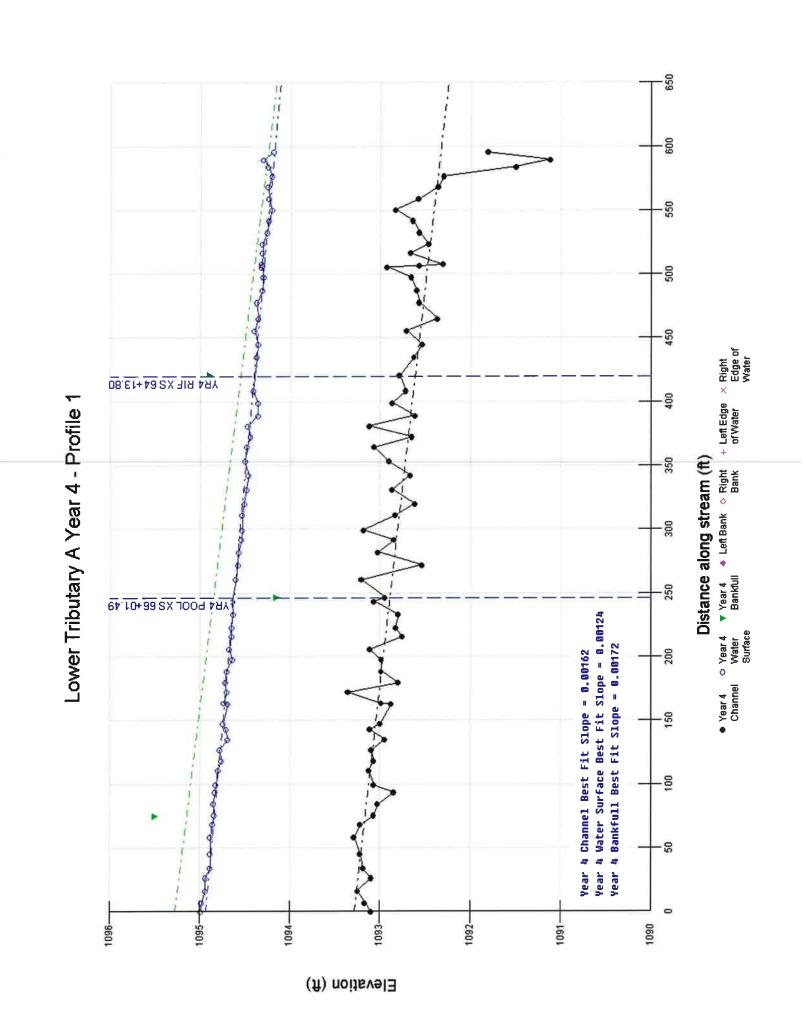


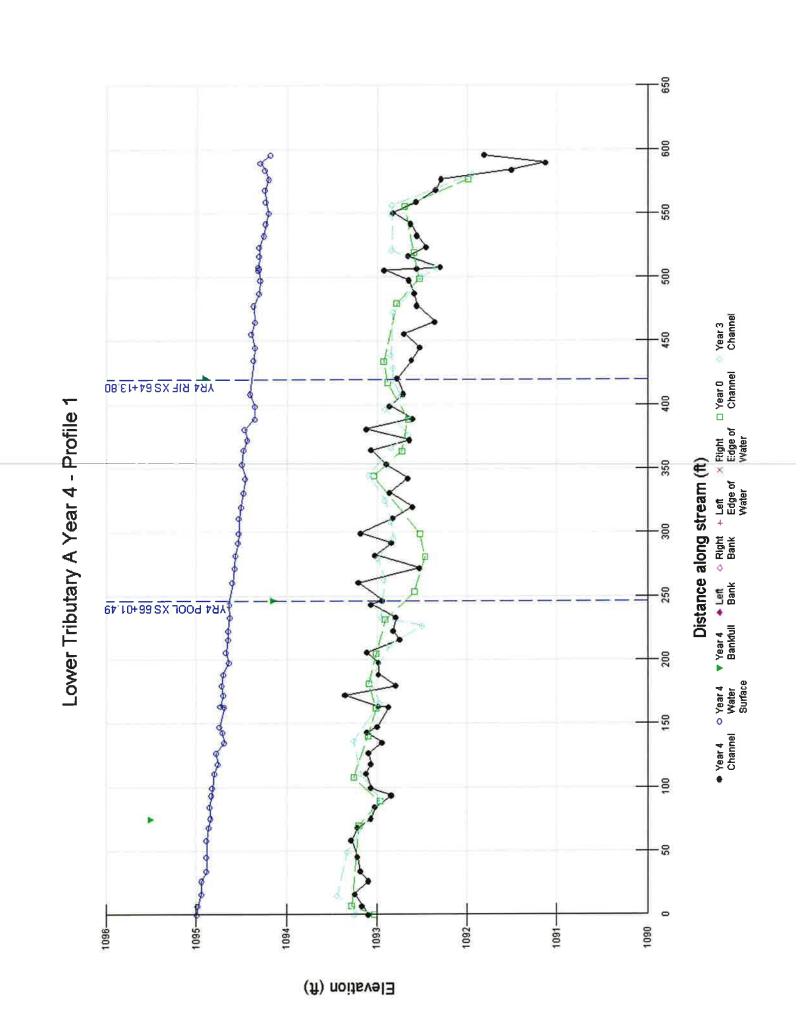

Cummon: Doto			PROJECT	PROJECT South Muddy
Summary Data				D04006-1
Bankfull Area	4.82 ft ²			4-YEAR
Bankfull Width	8.17 ft	TASK	Cross-Section	
Mean Depth	0.59 ft	REACH	ပ	
Maximum Depth	1.07 ft	DATE	60/66/6	
Width/Depth Ratio	13.85			
Entrenchment Ratio	2.4	,		
Classification	Ü		CROSS SECTION:	4+11.50
		Ecosystem	FEATURE:	Riffle

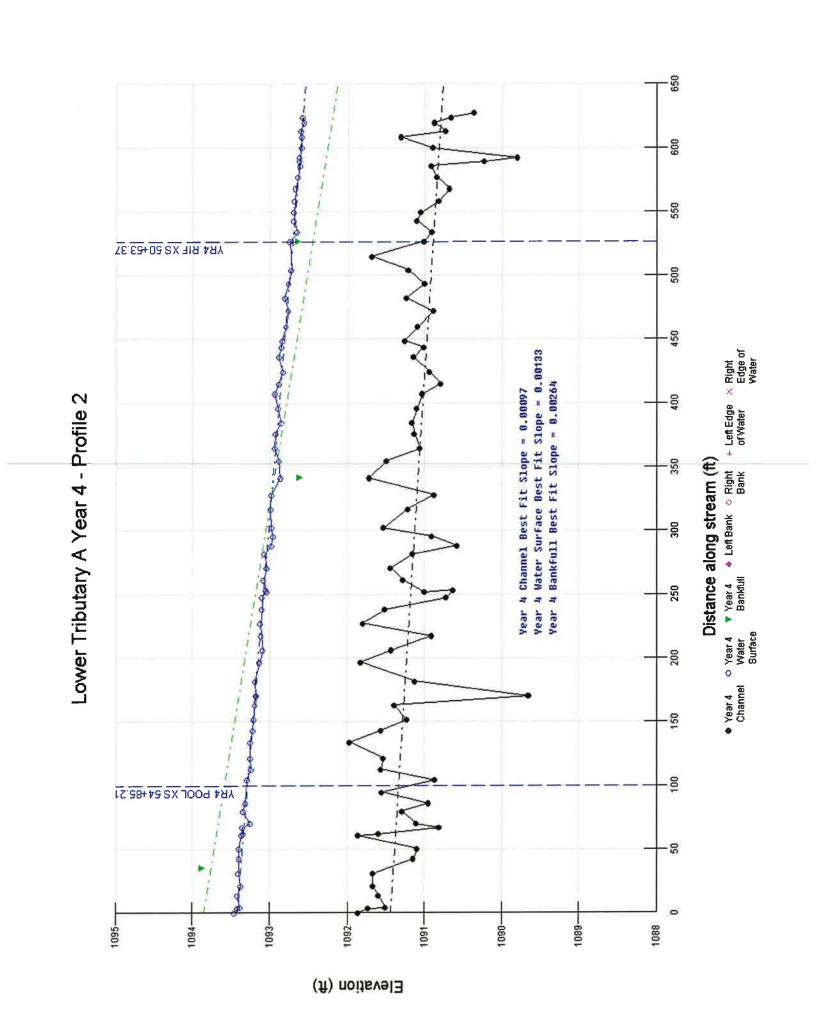


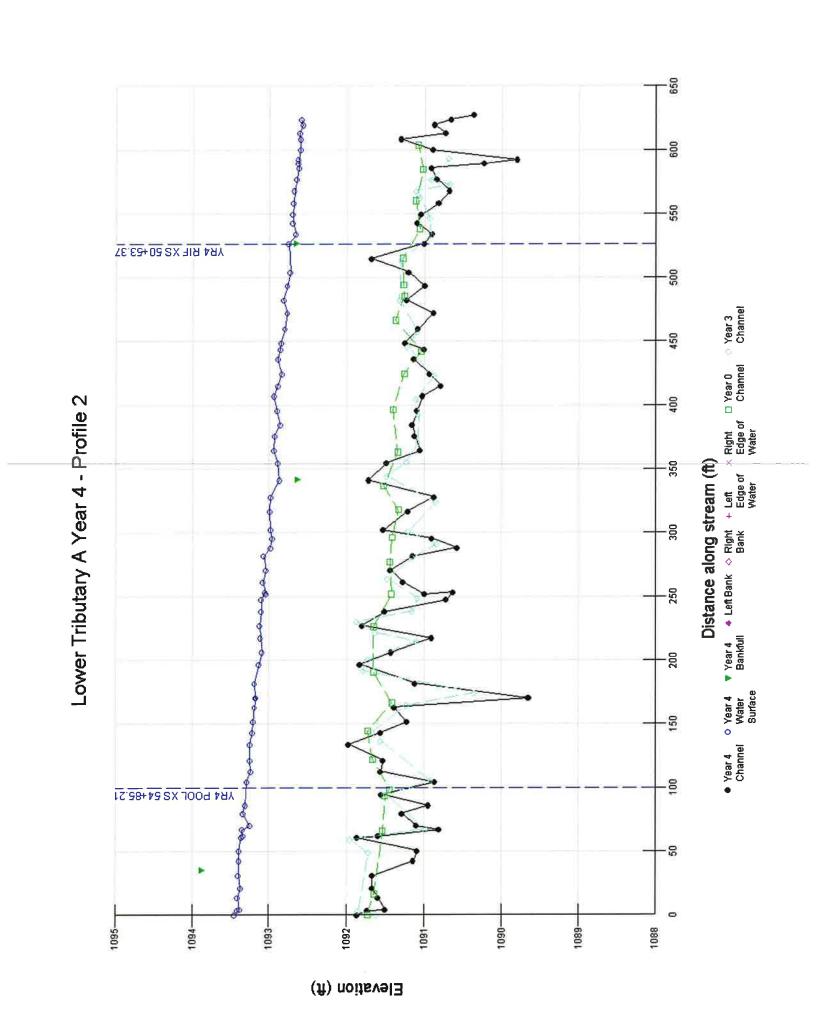


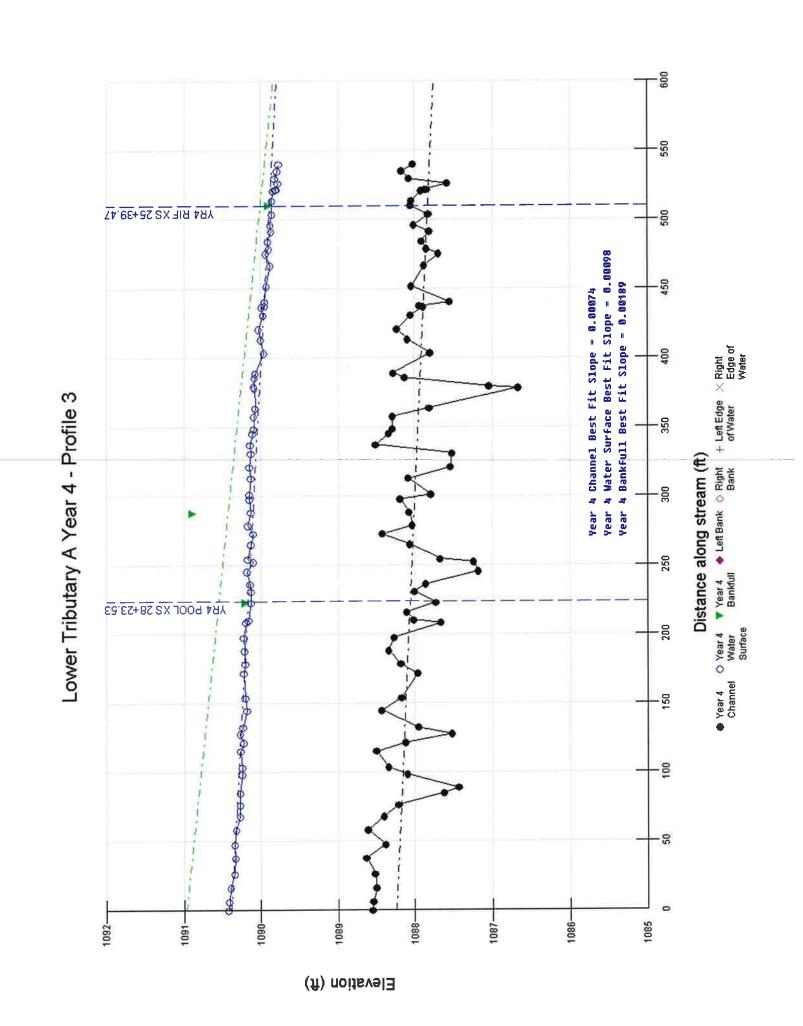


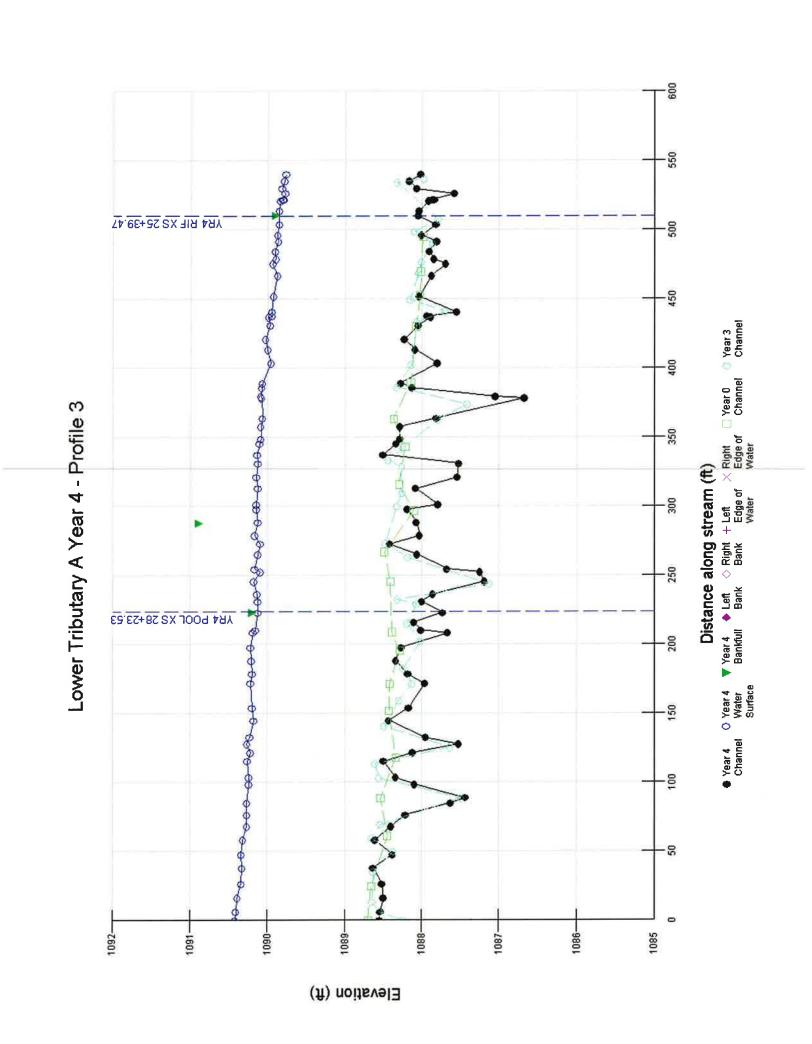


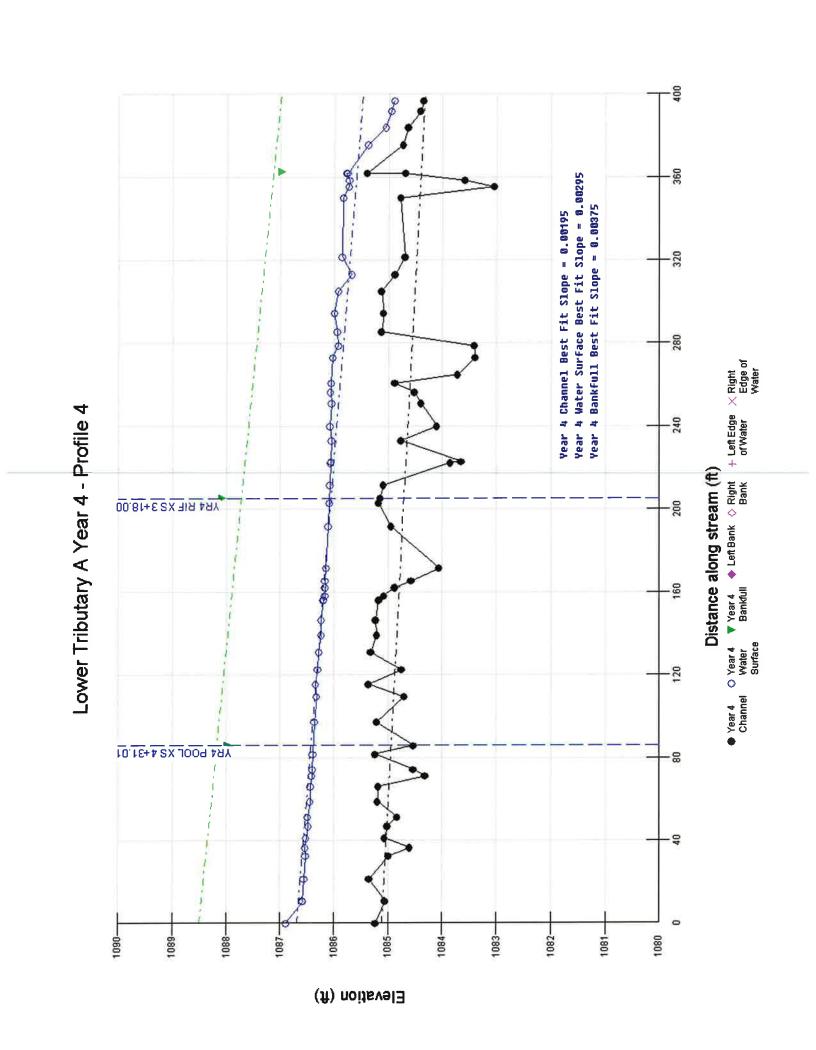


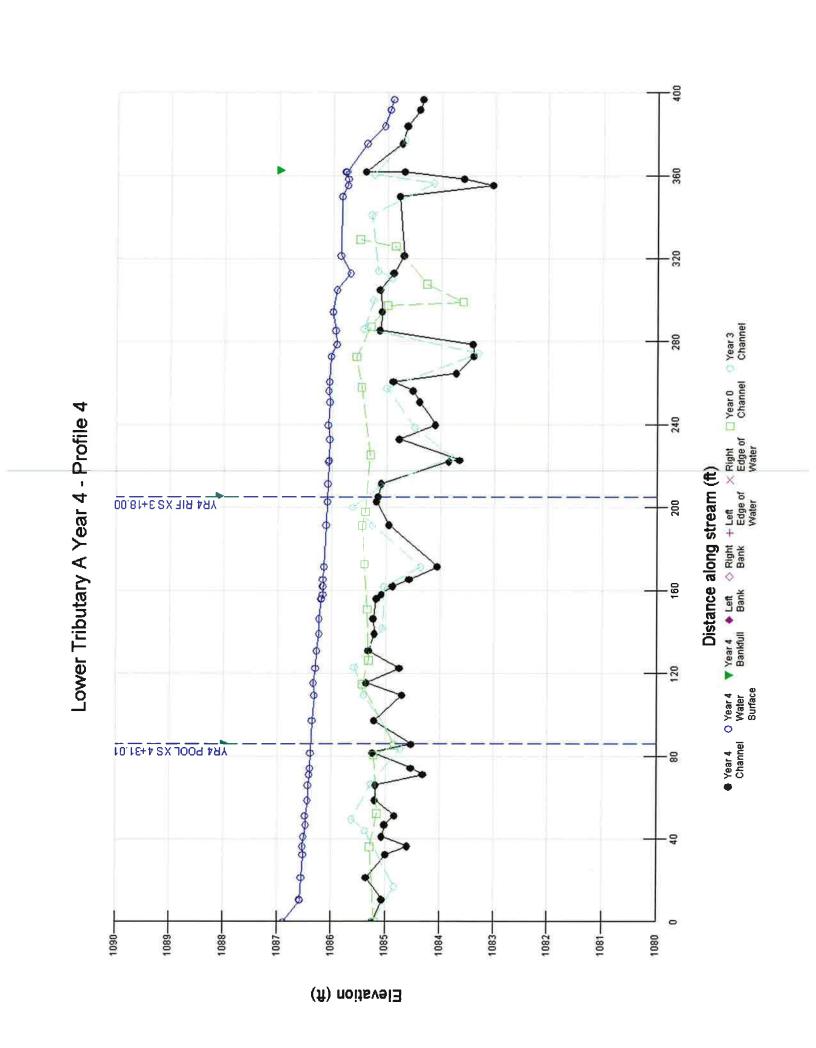


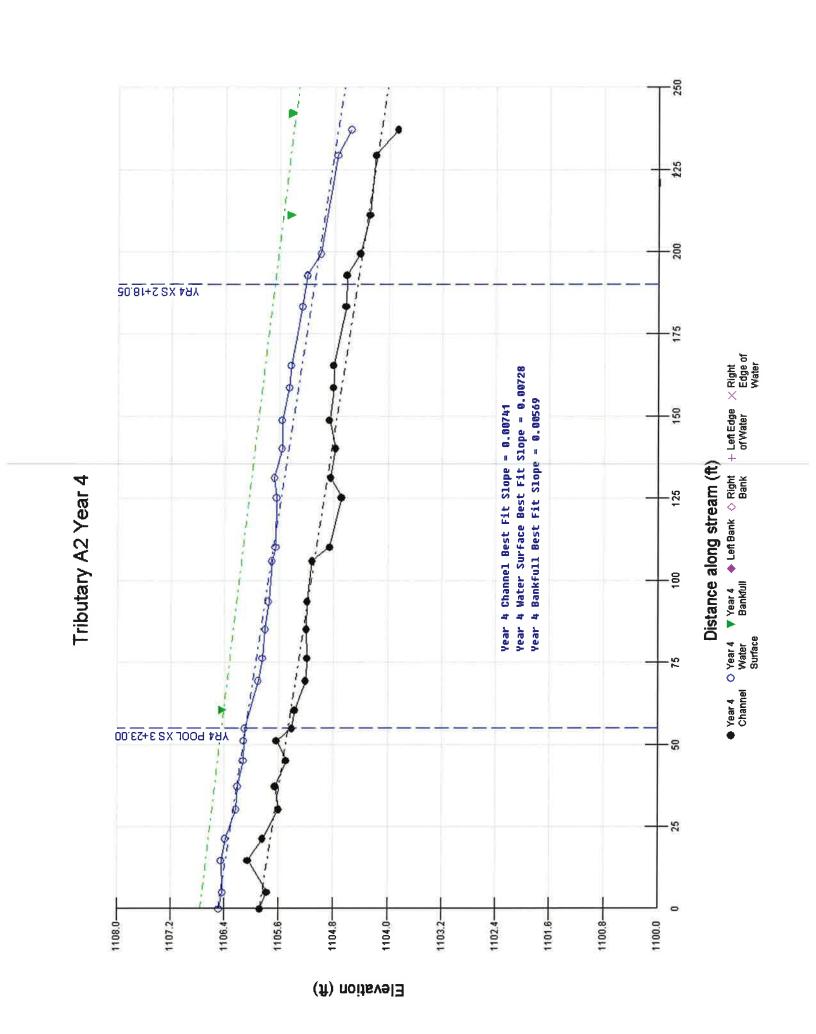


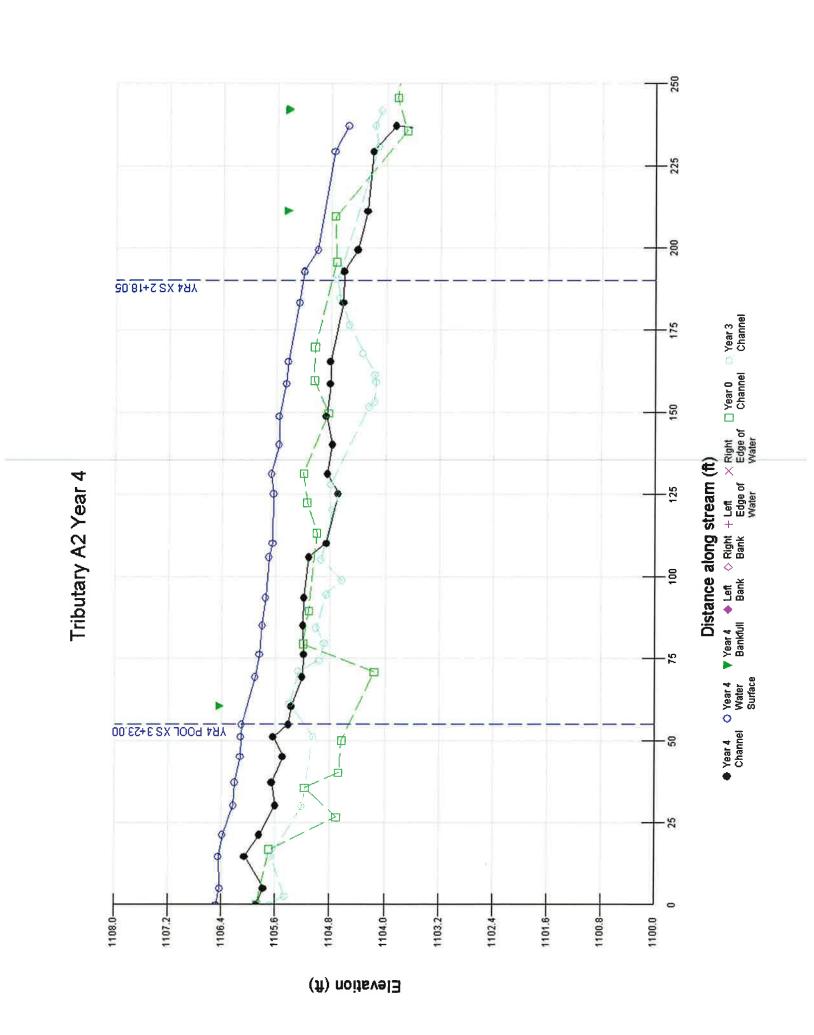


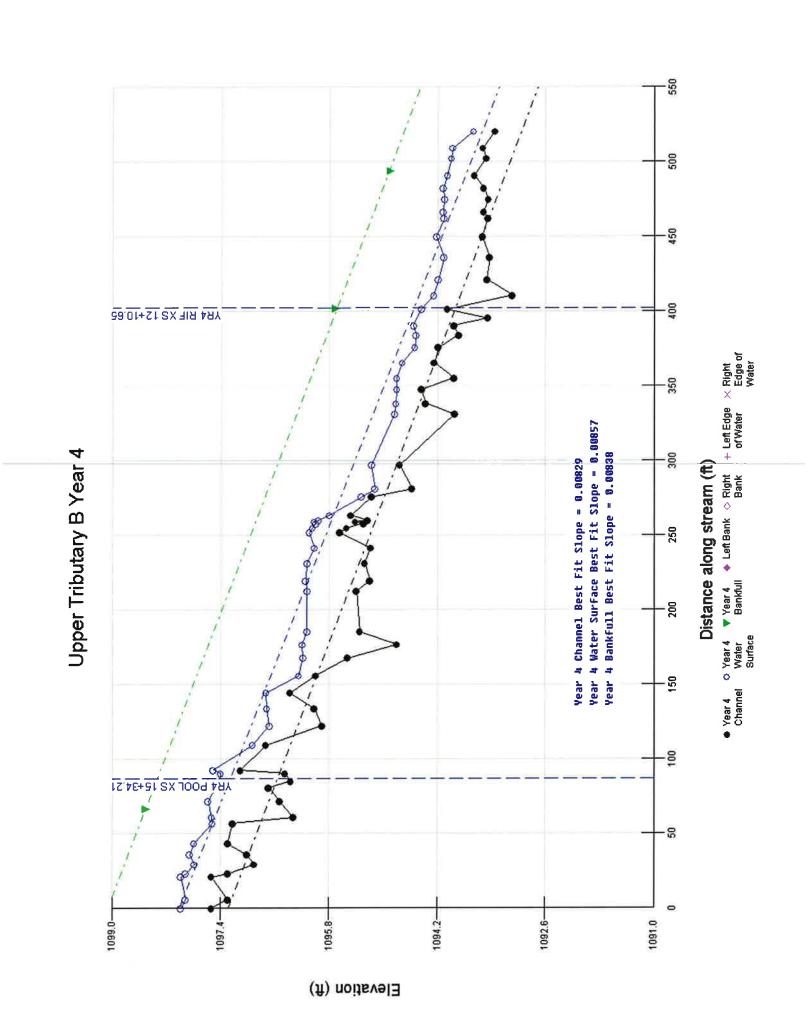


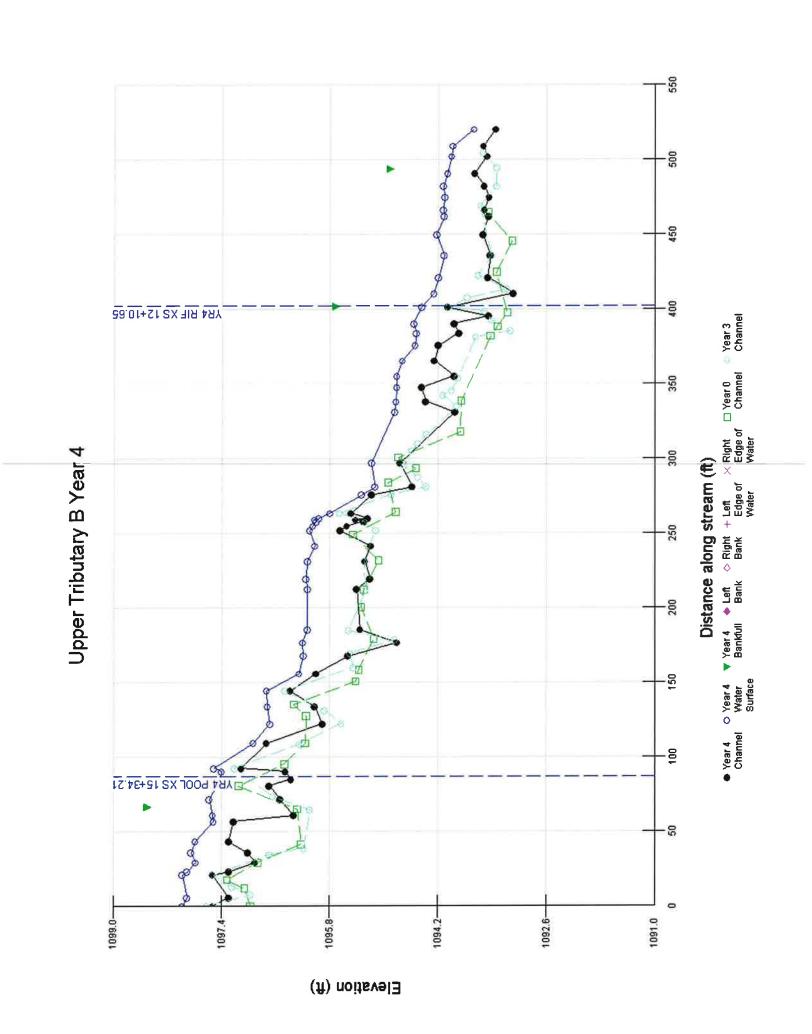


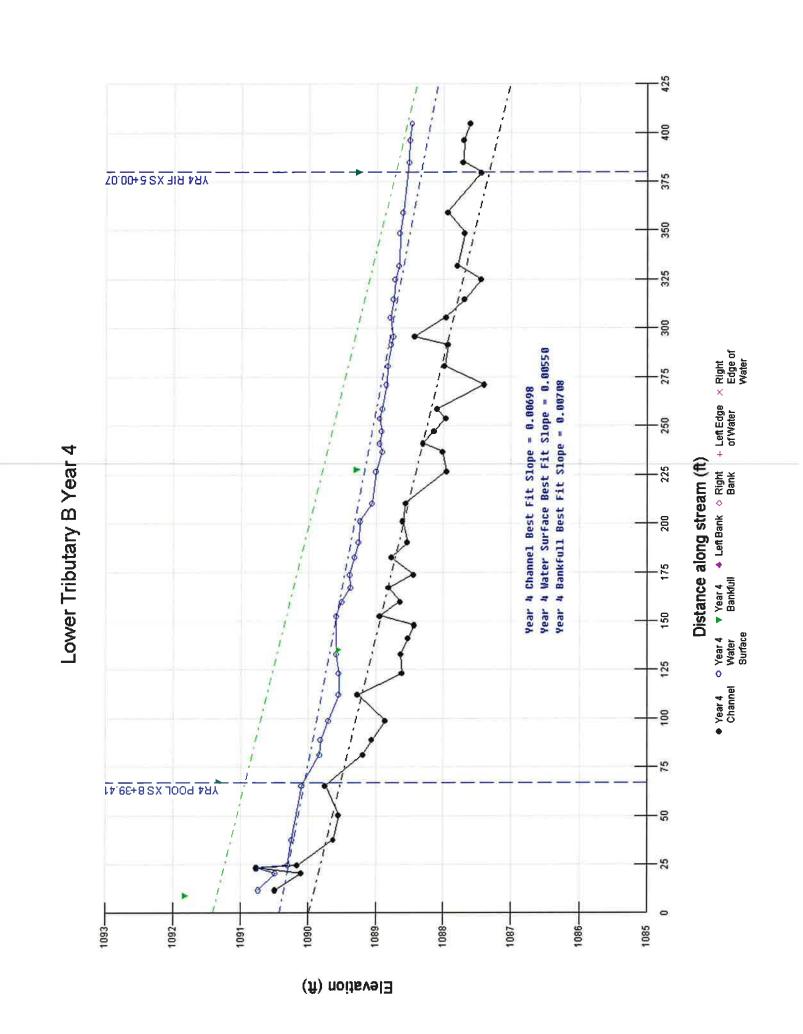


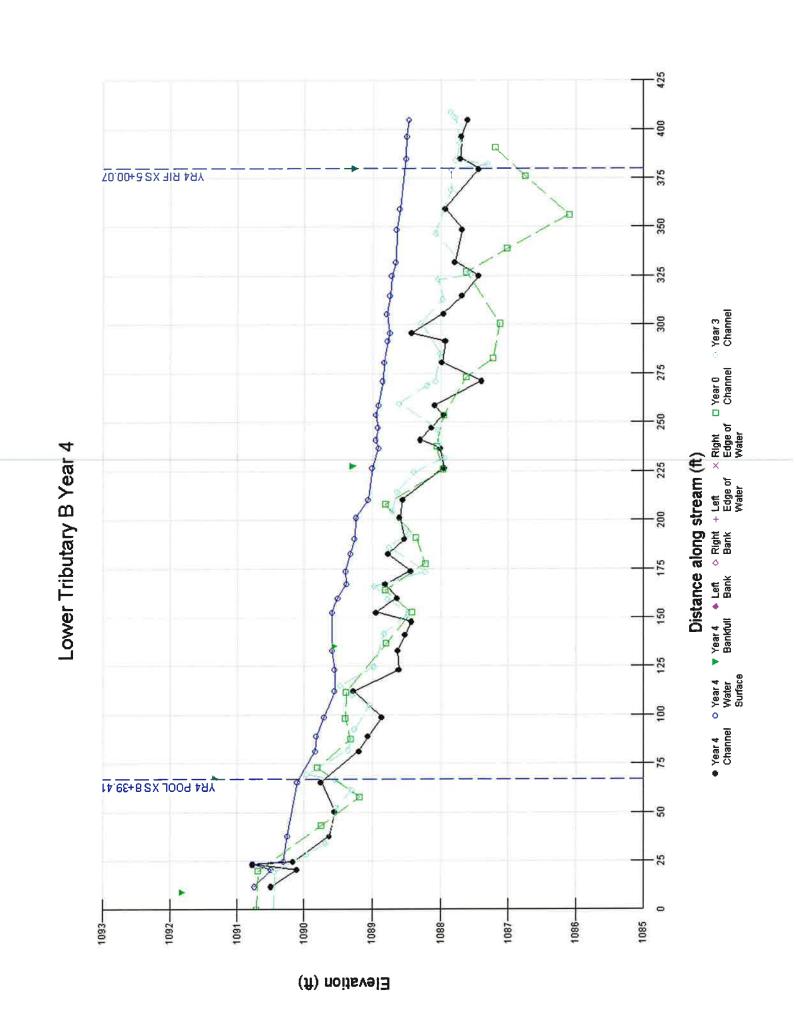


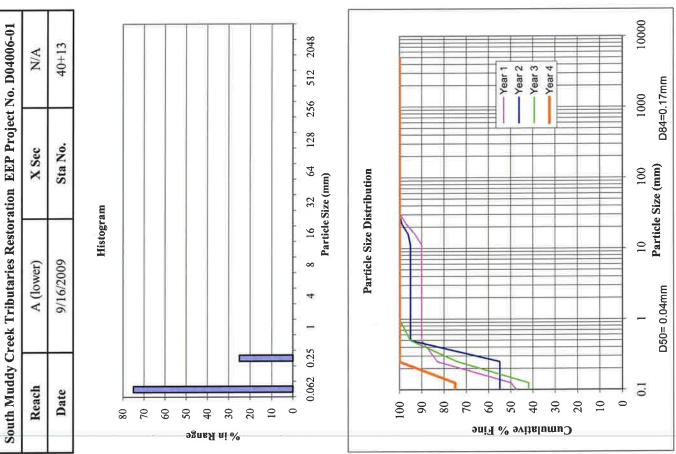











Pebble Count - Riffle					South M
Material	Particle Size (mm)	Count	% in Range	% Cumulative	Reac
Silt/Clay	<0.062	18	28	28	Date
Very Fine Sand	0.062-0.125	0	0	28	
Fine Sand	0.125-0.25	12	18	46	1 37
Medium Sand	0.25-0.5	25	38	85	6 4
Coarse Sand	0.5-1.0	10	15	100	35
Very Coarse Sand	1.0-2.0	0	0	100	30 + 32 30
Very Fine Gravel	2.0-4.0	0	0	100	na Ran 20
Fine Gravel	4.0-5.7	0	0	100	
Fine Gravel	5.7-8.0	0	0	100	10
Medium Gravel	8.0-11.3	0	0	100	0
Medium Gravel	11.3-16.0	0	0	100	0
Coarse Gravel	16.0-22.6	0	0	100	ļ
Coarse Gravel	22.6-32	0	0	100	
Very Coarse Gravel	32-45	0	0	100	-
Very Coarse Gravel	45-64	0	0	100	90 8
Small Cobble	64-90	0	0	100	8 8
Small Cobble	90-128	0	0	100	
Large Cobble	128-180	0	0	100	Fine
Large Cobble	180-256	0	0	100	У % эл
Small Boulder	256-362	0	0	100	italuı 6
Small Boulder	362-512	0	0	100	
Medium Boulder	512-1024	0	0	100	20
Large Boulder	1024-2048	0	0	100	0, 0
Bedrock	<2048	0	0	100	
To	Totals	65	100		

X Sec N/A	Sta No. 108+96			64 128 256 512 2048 0		Year 1 Year 2 Year 3 Year 3
A (upper)	9/16/2009 Sta	Histogram		1 4 8 16 32 Particle Size (mm		
Reach	Date		% in Range 35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.062 0.25	001 08 80	Cumulative % Fine 5 8 8 9 5 5 5 5

Pebble Count - Pool					South Mud
Material	Particle Size (mm)	Count	% in Range	% Cumulative	Reach
Silt/Clay	<0.062	36	09	09	Date
Very Fine Sand	0.062-0.125	0	0	09	
Fine Sand	0.125-0.25	16	27	87	02
Medium Sand	0.25-0.5	7	12	86	2 9
Coarse Sand	0.5-1.0	1	2	100	20
Very Coarse Sand	1.0-2.0	0	0	100	
Very Fine Gravel	2.0-4.0	0	0	100	n R an
Fine Gravel	4.0-5.7	0	0	100	
Fine Gravel	5.7-8.0	0	0	100	10
Medium Gravel	8.0-11.3	0	0	100	0
Medium Gravel	11.3-16.0	0	0	100	0.06
Coarse Gravel	16.0-22.6	0	0	100	
Coarse Gravel	22.6-32	0	0	100	
Very Coarse Gravel	32-45	0	0	100	*
Very Coarse Gravel	45-64	0	0	100	00 8
Small Cobble	64-90	0	0	100	
Small Cobble	90-128	0	0	100	
Large Cobble	128-180	0	0	100	
Large Cobble	180-256	0	0	100	05 % 9A
Small Boulder	256-362	0	0	100	
Small Boulder	362-512	0	0	100	
Medium Boulder	512-1024	0	0	001	20 -
Large Boulder	1024-2048	0	0	100	
Bedrock	<2048	0	0	100	0.1
Totals	als	09	100		

Note Note	1000	D84=
		2
(middle) 16/2009 4 8 Particle Size		10 Particle Size (mm)
	100	
Cumulative % Fine Cumulative % Fine 0.062 0.25	20 10 0 0.1	0.1 1 050=0.05mm

Pebble Count - Riffle					South
Material	Particle Size (mm)	Count	% in Range	% Cumulative	Re
Silt/Clay	<0.062	45	75	75	Q
Very Fine Sand	0.062-0.125	0	0	75	
Fine Sand	0.125-0.25	15	25	100	80
Medium Sand	0.25-0.5	0	0	100	70
Coarse Sand	0.5-1.0	0	0	100	09
Very Coarse Sand	1.0-2.0	0	0	100	
Very Fine Gravel	2.0-4.0	0	0	100	ısЯ n 5
Fine Gravel	4.0-5.7	0	0	100	ε ε !%
Fine Gravel	5.7-8.0	0	0	100	20 70
Medium Gravel	8.0-11.3	0	0	100	-
Medium Gravel	11.3-16.0	0	0	100	
Coarse Gravel	16.0-22.6	0	0	100	
Coarse Gravel	22.6-32	0	0	100	
Very Coarse Gravel	32-45	0	0	100	-
Very Coarse Gravel	45-64	0	0	100	ol o
Small Cobble	64-90	0	0	100	· ∞
Small Cobble	90-128	0	0	100	
Large Cobble	128-180	0	0	100	Fine o
Large Cobble	180-256	0	0	100	% 9Vi ∾
Small Boulder	256-362	0	0	100	
Small Boulder	362-512	0	0	100	
Medium Boulder	512-1024	0	0	100	7 -
Large Boulder	1024-2048	0	0	100	-
Bedrock	<2048	0	0	100	
То	Totals	09	100		

Pebble Count - Pool					South
Material	Particle Size (mm)	Count	% in Range	% Cumulative	æ
Silt/Clay	<0.062	32	53	53	-
Very Fine Sand	0.062-0.125	0	0	53	7.
Fine Sand	0.125-0.25	28	47	100	9
Medium Sand	0.25-0.5	0	0	100	3
Coarse Sand	0.5-1.0	0	0	100	06
Very Coarse Sand	1.0-2.0	0	0	100	9gı
Very Fine Gravel	2.0-4.0	0	0	100	n Ra n
Fine Gravel	4.0-5.7	0	0	100	% I
Fine Gravel	5.7-8.0	0	0	100	01
Medium Gravel	8.0-11.3	0	0	100	0
Medium Gravel	11.3-16.0	0	0	100	
Coarse Gravel	16.0-22.6	0	0	100	
Coarse Gravel	22.6-32	0	0	100	
Very Coarse Gravel	32-45	0	0	100	-
Very Coarse Gravel	45-64	0	0	100	01 6
Small Cobble	64-90	0	0	100	
Small Cobble	90-128	0	0	100	
Large Cobble	128-180	0	0	100	Fine
Large Cobble	180-256	0	0	100	% əA
Small Boulder	256-362	0	0	100	itslu:
Small Boulder	362-512	0	0	100	
Medium Boulder	512-1024	0	0	100	
Large Boulder	1024-2048	0	0	100	-
Bedrock	<2048	0	0	100	
To	Totals	09	100		

Bate 9/16/2009 Sta No. Histogram 0.062 0.25 1 4 8 16 32 64 128 256 512 Particle Size (mm) 100 0.062 0.25 1 1 1 10 100 1000	100	2 22 2	1900-000	2000
Histogram Histogram Particle Size (mm) Particle Size Distribution Particle 100 1000 1000 1000	Reach	A (lower)	X Sec	N/A
Histogram 0.062 0.25 1 4 8 16 32 64 128 256 512 Particle Size (mm) Particle Size Distribution 100 60 60 60 70 60 60 60 60 60	Date	9/16/2009	Sta No.	4+31
20 0.062 0.25 1 4 8 16 32 64 128 256 512 Particle Size (mm) Particle Size Distribution 100 60 50 50 60 50 70 60 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70	09	Histogram	3	
20 0.062 0.25 1 4 8 16 32 64 128 256 512 Particle Size (mm) Particle Size (mm) Particle Size Distribution 100 60 60 60 70 60 70 70 10 10 10 100 1000	50 40			
Particle Size (mm) Particle Size (mm) Particle Size Distribution Particle Size Distribution Particle Size Distribution 100 90 60 60 60 60 70 90 100 100 100 100 1000	20 10			
100 80 80 60 50 50 40 40 40 10 10 10 100 100 100	0.062	_ ∞	4 128 256	
100 80 80 60 50 50 40 40 7 ear 10 10 100 100 100		Particle Size Distril	oution	
50 40 40 30 20 10 0 0 1000	—			
20 20 10 0 0 100 1000	The state of the s			Year 1
001 10 100 1000				Year 2 Year 3 Year 4
Dartiolo Cizo (mm)	0.1			

Sout					,	, (9है।	п. Вай	II %										Fine	% 9/	viselu	Cum)			
	% Cumulative	22	22	55	55	55	55	55	55	55	55	55	57	57	62	70	85	97	100	100	100	100	100	100	100	
	% in Range	22	0	33	0	0	0	0	0	0	0	0	2	0	5	8	15	12	3	0	0	0	0	0	0	100
	Count	13	0	20	0	0	0	0	0	0	0	0	1	0	3	5	6	7	2	0	0	0	0	0	0	09
	Particle Size (mm)	<0.062	0.062-0.125	0.125-0.25	0.25-0.5	0.5-1.0	1.0-2.0	2.0-4.0	4.0-5.7	5.7-8.0	8.0-11.3	11.3-16.0	16.0-22.6	22.6-32	32-45	45-64	64-90	90-128	128-180	180-256	256-362	362-512	512-1024	1024-2048	<2048	
Pebble Count - Riffle	Material	Silt/Clay	Very Fine Sand	Fine Sand	Medium Sand	Coarse Sand	Very Coarse Sand	Very Fine Gravel	Fine Gravel	Fine Gravel	Medium Gravel	Medium Gravel	Coarse Gravel	Coarse Gravel	Very Coarse Gravel	Very Coarse Gravel	Small Cobble	Small Cobble	Large Cobble	Large Cobble	Small Boulder	Small Boulder	Medium Boulder	Large Boulder	Bedrock	Totals

lo. D04006-01	N/A	2+25				512 2048		Year 1 Year 2 Year 3 Year 4 O 10000
tion EEP Project N	X Sec	Sta No.	ш			32 64 128 256 ize (mm)	tribution	10 100 1000 Particle Size (mm) D84=88.27mm
South Muddy Creek Tributaries Restoration EEP Project No. D04006-01	В	9/16/2009	Histogram			1 4 8 16 32 6 Particle Size (mm)	Particle Size Distribution	1 10 D50=0.23mm Particle 3
South Muddy Cree	Reach	Date		35 35 30 25 20 30 35 35 35 35 35 35 35 35 35 35 35 35 35	7 Jui %	0.062 0.25		Cumulative % Fine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pebble Count - Pool					South Muddy C1	South Muddy Creek Tributaries Restoration EEP Project No. D04006-01	ration EEP	Project No. D()4006-01
Material	Particle Size (mm)	Count	% in Range	% Cumulative	Reach	В	X Sec		N/A
Silt/Clay	<0.062	18	30	30	Date	9/16/2009	Sta No.		15+34
Very Fine Sand	0.062-0.125	0	0	30					
Fine Sand	0.125-0.25	14	23	53	40	Histogram	ram		
Medium Sand	0.25-0.5	21	35	88	35				
Coarse Sand	0.5-1.0	7	12	100	30				
Very Coarse Sand	1.0-2.0	0	0	100	25				
Very Fine Gravel	2.0-4.0	0	0	100	n Rai				
Fine Gravel	4.0-5.7	0	0	100	5 5			=	
Fine Gravel	5.7-8.0	0	0	100					
Medium Gravel	8.0-11.3	0	0	100			.0.		
Medium Gravel	11.3-16.0	0	0	100	0.062 0.25	1 4 8	32 64	128 256 512	2048
Coarse Gravel	16.0-22.6	0	0	100		Particle	Particle Size (mm)		
Coarse Gravel	22.6-32	0	0	100		Particle Size Distribution	istribution		
Very Coarse Gravel	32-45	0	0	100	•				
Very Coarse Gravel	45-64	0	0	100	001	V			
Small Cobble	64-90	0	0	100	2 %				
Small Cobble	90-128	0	0	100					
Large Cobble	128-180	0	0	100	Fine 60				
Large Cobble	180-256	0	0	100	ve %			, , , , , , , , , , , , , , , , , , ,	Year 1
Small Boulder	256-362	0	0	100				- Ye	Year 3
Small Boulder	362-512	0	0	100					rear 4
Medium Boulder	512-1024	0	0	100	20				
Large Boulder	1024-2048	0	0	100	01				
Bedrock	<2048	0	0	100	0.1	1 10	100	1000	10000
To	Totals	09	100		9Q	D50= 0.23mm Particle	Particle Size (mm)	D84=0.47mm	

BF 1 Crest Gage at station 5+00 on Tributary B. (EMH&T, Inc. 7/18/07)

BF 2 Crest Gage at station 54+85 on Tributary A (lower). (EMH&T, Inc. 7/18/07)

BF 3 Crest Gage at station 113+37 on Tributary A (upper). (EMH&T, Inc. 10/19/07)

BF 4
Bankfull event in progress on Tributary A (Lower) near station 3+18, looking upstream. (EMH&T, Inc. 9/11/08)

BF 5
Bankfull event in progress on Tributary A (Lower) near station 3+18, looking across the channel.

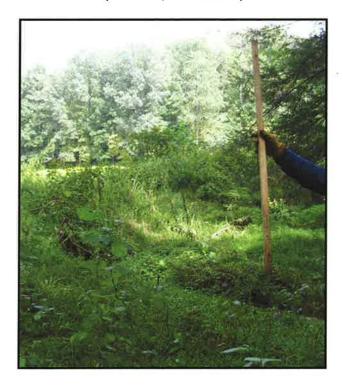
(EMH&T, Inc. 9/11/08)

BF 6 Bankfull event in progress on Tributary A (Lower) near station 40+13, looking upstream. (EMH&T, Inc. 9/11/08)

BF 7
Bankfull event in progress on Tributary A (Lower) near station 40+13, looking across the channel.

(EMH&T, Inc. 9/11/08)

BF 8
Crest Gage on Tributary A (upper).
(EMH&T, Inc. 9/21/09)


BF 9
Crest Gage on Tributary A (middle).
(EMH&T, Inc. 9/21/09)

BF 10 Crest Gage on Tributary A2. (EMH&T, Inc. 9/21/09)

BF 11 Crest Gage on Tributary B. (EMH&T, Inc. 9/21/09)

BF 12 Crest Gage on Tributary C. (EMH&T, Inc. 9/21/09)